
Finding Dependencies from
Defect History

Rajiv Das, Wipro Technologies

Jacek Czerwonka, Microsoft Corporation

Nachiappan Nagappan, Microsoft Corporation

Copyright ISSRE 2009

Context – Windows Development

• Size and scope
– 40+ MLOC
– Development team spread all over the world
– 1B+ users
– 400,000 supported devices
– 6,000,000 apps running on Windows
– Up to 10 years of servicing

• Challenges
– Large, complex codebase with millions of tests
– Diverse customer base
– Time and resource constraints
– Diverse test execution
– Very low tolerance to failure

Problems

• Unknown Dependencies

– Static, Dynamic Analysis does not find everything

• Large number of Dependencies

– How to prioritize Integration Testing when changes are
routine and costs involved are high?

Motivation

Graphics Driver crashes
whenever user ‘Pastes’
image to Photo Editor

– Internal defect in driver,
exposed by unknown
dependency between
editor and driver

Defect Id 2125

Title
Graphics driver crashes
on Paste

Status Closed
Opened By Alice
Opened On 7-November-2005
Affected
Component

Drivers\Video\Driver.sys

Resolution Fixed
Resolved By Bob
Resolved On 1-December-2005

Sample Defect Record

* Source Component Photo Editor, not recorded explicitly

Definitions

• Dependency: If defects are found frequently in
component C1 when component C2 is tested, then C2

may be dependent on C1

• Source Component: The component containing the
defect

• Affected Component: The component affected due to
a defect

Frequent Itemset Mining

In a transaction dataset,
frequent itemsets X and
Y can be found using
Dependence Rules
Mining:

1. Support(X), Support (Y)
and Support(X and Y)
above threshold

2. Confidence(X=>Y)
above threshold

If X and Y are items in the
transaction dataset:

• Support(X): probability
of occurrence of X, p(X).

• Confidence(X=>Y) : how
frequently Y occurs
when X occurs, p (Y|X).

• Importance (X=>Y): The
log likelihood of Y
occurring with X, than
without it i.e.

How to Identify Dependencies

• Let CS be source component

• Let CA be affected component

• Find frequent pairs of source and affected components
in the component map using Dependence Rules, CS =>
CA where
1. Support(CA), Support(CS), Support(CA and CS) >= support

cutoff

2. Confidence(CS => CA) >= confidence cutoff

3. Importance(CS => CA) is positive, meaning that the
affected component is positively statistically dependent
on the source component

How to Rank Dependencies

• Rank dependencies first by confidence and then by
importance.

– Higher confidence has higher rank

– Higher importance has higher rank

• For k topmost dependencies,

– First chose all dependencies greater than confidence cutoff

– Then choose k dependencies out of them with largest
importance

Example

Affected Source

C3

C3

C2 C5

Rule Support Confidence Importance

C2 => C4

Component Map

• Support 0.25
• Confidence 0.1
• Importance > 0

Dependencies Found

2

C1

C1

C1

C1

C2

C2

C2
C2

C2

C2

C4

C4

2/6 = 0.33 0.176

Ladybug Tool

• Automates dependency
discovery

• Easily Customizable

• Built on SQL Server
Platform – Analysis
Services, Integration
Services, SQL Server

Workflow

Experiment

• Pre-release Defects for Windows Vista and Windows
Server 2008

Size 92,976
Defects Included 28,762
Affected Components 1,649
Source Components 1,480

Input Component Map

Dependencies Found

Dependencies found by varying Support with
Confidence 0.005

Dependencies found by varying Confidence with
Support 0.0001

Outcome indicates that dependencies can be found for
various combinations of support and confidence thresholds

0

300

600

900

1200

0.005 0.01 0.05 0.1

D
e

p
e

n
d

e
n

ci
e

s

Confidence

0

300

600

900

1200

0.0001 0.00015 0.0002 0.0004

D
e

p
e

n
d

e
n

ci
e

s

Support

Source and Affected Components

Source and Affected Components included in
dependencies found by varying Support with

Confidence 0.005

Source and Affected Components included in
dependencies found by varying Confidence with

Support 0.0001

Fewer components get included in the results as the
thresholds are raised

0

100

200

300

400
A

ff
e

ct
e

d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

0.0001 0.00015 0.0002 0.0004

C
o

m
p

o
n

e
n

ts

Support

0

100

200

300

400

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

0.005 0.01 0.05 0.1

C
o

m
p

o
n

e
n

ts

Confidence

Effectiveness

Outcome indicates our approach can possibly find new
dependencies.

Comparison with MaX for dependencies found with
different Support values with Confidence 0.005

Comparison with MaX for dependencies found
different Confidence values with Support 0.0001

0%

50%

100%

0.0001 0.00015 0.0002 0.0004

D
e

p
e

n
d

e
n

ci
e

s

Support

Found By MaX Not Found By MaX

0%

50%

100%

0.005 0.01 0.05 0.1

D
e

p
e

n
d

e
n

ci
e

s

Confidence

Found By MaX Not Found By MaX

Manual Validation

Total dependencies 276
Votes Cast 211
Dependencies with Votes 182
Dependencies with
Multiple Votes

29

Experts Invited 127
Experts Participated 70

Vote tally for different buckets of dependencies

In general, owners seemed to confirm the dependencies
considerably more often than reject them

Dependencies found by our method with
support 0.0001 and confidence 0.005

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

All Confidence
≥ 0.4

Top 10%
Importance

Confirm Reject

Manual Validation (2)

Found by
MaX

Not Found
by Max

Row
Total

Confirmed 27 115 142

Rejected 12 28 40
Total 39 143 182

It is possible to discover additional new important
dependencies using our method

H0: Experts voted based on the rule
content and their background
system knowledge independently
of what the MaX data says, which
they may have seen before

We do not reject H0 at 95%
confidence level using Chi-Square
analysis.

Contingency table showing votes versus detection by
MaX

Applicability

We can start mining at early phase of software
development and keep refining model over time as more

data becomes available.

Dependencies found as a
function of defect reports, for
different confidence values
and support count 25,
indicates more defect reports
yielded more dependencies

0

50

100

150

200

250

D
e

p
e

n
d

e
n

ci
e

s

Percentage of Component Map
0.1 0.4

Alternative Input Component Maps

Component Map 1 Component Map 2

Ownership Error (%) 0 5
Map Size 89,075 92,976
Defects 28,028 28,762
Affected Components 1,637 1,649
Source Components 1,470 1,480

•Alternative Component Maps were extracted using
different values of Ownership Errors
•No noticeable difference in the results

* Detailed description available in paper

Threats to Validity

• Dependencies cannot be found for Components that
have not been part of significant number of defects in
the past

• Our study is on a well-componentized, large-scale
software system with a stable development process
and considerable number of defect reports.

• For practical applications, it may be useful to use
higher thresholds to restrict the outcome to the most
significant rules only.

Conclusions

• New Approach to identified software dependencies

• An approach to rank dependencies using defect history

• Ladybug tool to mine defect history for new dependencies

• Possible to start mining at any phase of development and
refine models over time

• Found a large number of dependencies confirmed by
experts but are not found by static analysis tools

• Ladybug analysis has been incorporated in a larger change
analysis and test targeting system used in Windows
Serviceability and recommendations are used by hundreds
of engineers every month

Future Work

• Apply Ladybug to defect datasets of other software

• Look at ways of incorporating user judgment to
generate better dependency recommendations

