
Finding Dependencies from 
Defect History

Rajiv Das, Wipro Technologies

Jacek Czerwonka, Microsoft Corporation

Nachiappan Nagappan, Microsoft Corporation

Copyright ISSRE 2009



Context – Windows Development

• Size and scope
– 40+ MLOC
– Development team spread all over the world
– 1B+ users
– 400,000 supported devices
– 6,000,000 apps running on Windows
– Up to 10 years of servicing

• Challenges
– Large, complex codebase with millions of tests
– Diverse customer base
– Time and resource constraints
– Diverse test execution
– Very low tolerance to failure



Problems

• Unknown Dependencies

– Static, Dynamic Analysis does not find everything

• Large  number of Dependencies

– How to prioritize Integration Testing when changes are 
routine and costs involved are high?



Motivation

Graphics Driver crashes 
whenever user ‘Pastes’ 
image to Photo Editor

– Internal defect in driver,
exposed by unknown
dependency between
editor and driver

Defect Id 2125

Title
Graphics driver crashes 
on Paste

Status Closed
Opened By Alice
Opened On 7-November-2005
Affected 
Component

Drivers\Video\Driver.sys

Resolution Fixed
Resolved By Bob
Resolved On 1-December-2005

Sample Defect Record

* Source Component Photo Editor, not recorded explicitly



Definitions

• Dependency: If defects are found frequently in 
component C1 when component C2 is tested, then C2

may be dependent on C1

• Source Component: The component containing the 
defect

• Affected Component: The component affected due to 
a defect



Frequent Itemset Mining

In a transaction dataset, 
frequent itemsets X and 
Y can be found using 
Dependence Rules 
Mining:

1. Support(X), Support (Y)
and Support(X and Y) 
above threshold

2. Confidence(X=>Y)
above threshold

If X and Y are items in the 
transaction dataset:

• Support(X): probability 
of occurrence of X, p(X).

• Confidence(X=>Y) : how 
frequently Y occurs 
when X occurs, p (Y|X).

• Importance (X=>Y): The 
log likelihood of Y
occurring with X, than 
without it i.e.  



How to Identify Dependencies

• Let CS be source component 

• Let CA be affected component

• Find frequent pairs of source and affected components 
in the component map using Dependence Rules, CS => 
CA where
1. Support(CA), Support(CS), Support(CA and CS) >= support 

cutoff

2. Confidence(CS => CA)  >= confidence cutoff

3. Importance(CS => CA) is positive, meaning that the 
affected component is positively statistically dependent 
on the source component



How to Rank Dependencies

• Rank dependencies first by confidence and then by 
importance.

– Higher confidence has higher rank

– Higher importance has higher rank

• For k topmost dependencies, 

– First chose all dependencies greater than confidence cutoff

– Then choose k dependencies out of them with largest 
importance 



Example

Affected Source 

C3

C3

C2 C5

Rule Support Confidence Importance

C2 => C4

Component Map

• Support 0.25
• Confidence 0.1 
• Importance > 0

Dependencies Found

2

C1

C1

C1

C1

C2

C2

C2
C2

C2

C2

C4

C4

2/6 = 0.33 0.176



Ladybug Tool

• Automates dependency 
discovery

• Easily Customizable

• Built on SQL Server 
Platform – Analysis 
Services, Integration 
Services, SQL Server

Workflow



Experiment

• Pre-release Defects for Windows Vista and Windows 
Server 2008

Size 92,976
Defects Included 28,762
Affected Components 1,649
Source Components 1,480

Input Component Map



Dependencies Found

Dependencies found by varying Support with 
Confidence 0.005

Dependencies found  by varying  Confidence with 
Support 0.0001 

Outcome indicates that dependencies can be found for 
various combinations of support and confidence thresholds
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Source and Affected Components

Source and Affected Components included in 
dependencies found by varying Support with 

Confidence 0.005

Source and Affected Components included in 
dependencies found by varying Confidence with 

Support 0.0001

Fewer components get included in the results as the 
thresholds are raised
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Effectiveness

Outcome indicates our approach can possibly find new 
dependencies.

Comparison with MaX for dependencies found with 
different Support values with Confidence 0.005

Comparison with MaX for dependencies found 
different Confidence values with Support 0.0001
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Manual Validation

Total dependencies 276
Votes Cast 211
Dependencies with Votes 182
Dependencies with 
Multiple Votes

29

Experts Invited 127
Experts Participated 70

Vote tally for different buckets of dependencies

In general, owners seemed to confirm the dependencies 
considerably more often than reject them

Dependencies found  by our method with 
support 0.0001 and confidence 0.005
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Manual Validation (2)

Found by 
MaX

Not Found 
by Max

Row 
Total

Confirmed 27 115 142

Rejected 12 28 40
Total 39 143 182

It is possible to discover additional new important 
dependencies using our method

H0: Experts voted based on the rule 
content and their background 
system knowledge independently 
of what the MaX data says, which 
they may have seen before

We do not reject H0 at 95% 
confidence level using Chi-Square 
analysis. 

Contingency table showing votes versus  detection by 
MaX



Applicability

We can start mining at early phase of software 
development and keep refining model over time as more 

data becomes available.

Dependencies found as a 
function of defect reports, for 
different confidence values 
and support count  25, 
indicates more defect reports 
yielded more dependencies
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Alternative Input Component Maps

Component Map 1 Component Map 2

Ownership Error (%) 0 5
Map Size 89,075 92,976
Defects 28,028 28,762
Affected Components 1,637 1,649
Source Components 1,470 1,480

•Alternative Component Maps were extracted using 
different values of Ownership Errors
•No noticeable difference in the results

* Detailed description available in paper



Threats to Validity

• Dependencies cannot be found for Components that 
have not been part of significant number of defects in 
the past

• Our study is on a well-componentized, large-scale 
software system with a stable development process 
and considerable number of defect reports. 

• For practical applications, it may be useful to use 
higher thresholds to restrict the outcome to the most 
significant rules only. 



Conclusions

• New Approach to identified software dependencies

• An approach to rank dependencies using defect history

• Ladybug tool to mine defect history  for new dependencies

• Possible to start mining at any phase of development and 
refine models over time

• Found a large number of dependencies confirmed  by 
experts but are not found by static analysis tools

• Ladybug analysis has been incorporated in a larger change 
analysis and test targeting system used in Windows 
Serviceability and recommendations are used by hundreds 
of engineers every month



Future Work

• Apply Ladybug to defect datasets of other software

• Look at ways of incorporating user judgment to 
generate better dependency recommendations




