
Formal Model Based Methodology for Developing
Controllers for Nuclear Applications

A. Wakankar #1, R. Mitra #2, A.K. Bhattacharjee#3, S.V. Shrikhande#4, S.D. Dhodapkar#5, R.K. Patil#6
Reactor Control Division, Bhabha Atomic Research Centre,

 Mumbai 400085, India
1 amolk@barc.gov.in
2 rmitra@barc.gov.in
3 anup@barc.gov.in
4 svs@barc.gov.in
5 sdd@barc.gov.in

6 rkpatil@barc.gov.in

Abstract—The approach used in model based design is to build

the model of the system in graphical/textual language. In older
model based design approach, the correctness of the model is
usually established by simulation. Simulation which is analogous
to testing, cannot guarantee that the design meets the system
requirements under all possible scenarios. This is however
possible if the modeling language is based on formal semantics so
that the developed model can be subjected to formal verification
of properties based on specification. The verified model can then
be translated into an implementation through reliable/verified
code generator thereby reducing the necessity of low level testing.
Such a methodology is admissible as per guidelines of IEC60880
standard applicable to software used in computer based systems
performing category A functions in nuclear power plant and
would also be acceptable for category B functions.

In this paper, we present our experience in implementation
and formal verification of important controllers used in the
process control system of a nuclear reactor. We have used the
SCADE environment to model the controllers. The modeling
language used in SCADE is based on the synchronous dataflow
model of computation. A set of safety properties has been
verified using formal verification technique.

I. INTRODUCTION
The approach used in model based design is to build the

model of application in some modeling language and then
obtain the implementation in a programming language
automatically using code generator. In older model based
approach (e.g. UML tools [1]), the correctness of the model is
mainly established by simulation. However simulation cannot
guarantee that the design meets the system requirements under
all possible scenarios. This is possible only if the modeling
language is based on formal semantics and the model can be
subjected to formal verification of system properties, which
are derived from system requirements. Verification of these
properties establishes that the model meets the system
requirements. Such a model driven design methodology where
the modeling language has formal semantics and environment
supports formal verification of properties is termed here as
Formal Model Based Design Approach.

The advantage of this approach is that, any change in the
requirement can be directly introduced in the model and
verified (both via simulation and formal verification) before
code is generated automatically, thereby keeping the
implementation in sync with the design. This is a significant
advantage in implementing change requests.

Such methodology for the development of software used in
safety class applications conforms closely to the design
guidelines recommended by IEC60880. In fact since it is
possible to rigorously verify safety properties, the design
process can meet most of the guidelines in appendix E of
IEC60880. Since use of formal model based technique
represented methodology change, it was decided to carry out
implementation for two important controllers for which earlier
implementation existed for comparative purposes. SCADE [4],
a model based design environment was chosen for this
purpose. SCADE supports a graphical modeling language
having an underlying formal semantics defined on
synchronous dataflow model of computation. The SCADE
environment also supports model simulation, model test
coverage (MTC) analyzer, formal verification tool and
certified code generator. It allows model verification through
interactive simulation and formal verification. Another
important aspect is that the SCADE models are built using
graphical notation that is easily understood, thus greatly
helping to simplify review of models by control engineers.

Two controllers viz Steam Generator Pressure Controller
(SGPC) and Primary Heat Transport Pressure Controller
(PHTPC) were selected for implementation. These controllers
were earlier implemented using conventional software
development techniques and are in actual use. In that way it
was possible for us to compare the effectiveness of the new
technique. The complete development process was followed
which included modeling, simulation, test coverage
measurement and code generation. This was followed by
testing in target hardware with I/O simulation. For the
verification of safety properties the SCADE Design Verifier
was used. Two controllers were implemented using SCADE
but only SGPC controller is used as example in the following.

Copyright ISSRE 2009

The paper is organized as follows: Section II provides the
background containing brief descriptions of SGPC controller
and SCADE specification language. Section III describes
formal model development. Validation of SCADE model
using simulation and MTC is described in section IV. Section
V describes formal verification of SGPCS model by
specifying and proving safety properties. Section VI describes
code generation and integration and finally section VII gives
the brief report of experience gained and future work.

II.

A.

B.

BACKGROUND

Process Control Systems in Nuclear Reactor
The objective of SGPCS (Steam Generator Pressure

Control System) [7, 8] is to regulate the steam generator (SG)
pressure by controlling the total amount of steam drawn from
the SG. The heat input to the SG through Primary Heat
Transport system is a function of reactor power, which is
controlled independently. When the energy in the steam
drawn from SG equals the energy released from reactor fuel
into the primary coolant, the primary fluid temperature and
steam temperature (and hence the pressure) are maintained at
steady values. The steam pressure regulation is achieved by
controlling the valves in various steam lines taking steam to
either the turbine (turbine governor valves TGVs) or dumping
into condenser (condenser steam dump valves CSDVs) or
discharging to atmosphere (atmospheric steam discharge
valves ASDVs). So the objective of the SGPC system is to
generate the control signals for valves specified above. The
control signal is generated by applying PID control algorithm
to the error signal calculated based on the difference between
measured SG pressure and operational pressure setpoint
(OPSP). The operational pressure setpoint is function of
reactor power and is calculated using no load setpoint (NLSP)
and ∆T, the measured differential temperature across SG,
which is a measure of reactor power. The main control signal
is generated by applying PID control algorithm to the error,
which is then split into three ranges to derive control signals
for the three types of actuating valves i.e. TGVs, CSDVs and
ASDVs. Since these controllers perform critical functions, the
input measurements are triplicated /quadruplicated to provide
redundancy.

SCADE Specification Language
The SCADE [4, 5] modeling notation supports Dataflow

Equation and Safe State Machine for modeling the system. A
dataflow equation describes the logical relationship between
input and output variables. Safe state machine describes the
control flow in the system in terms of state transitions. Set of
dataflow equations are evaluated in parallel unless there is a
data dependency between them. Internally the SCADE models
are represented in SCADE textual language. SCADE textual
language is based on the dataflow formalism, which is similar
to the Synchronous dataflow language Lustre [3].

Synchronous languages [2] are based on synchrony
hypothesis, which assumes that the program is able to react to
an external event, before any further event occurs. In dataflow
language a program is described as network of operators

transforming flows of data. SCADE model is graphically
represented as network of operators. For example a basic
counter that counts up from 0 can be expressed in SCADE
textual language as

N = 0 → pre (N) + 1;
In above equation N is a variable that stores the value of

counter at a given instance of time. The operator → is called
the “followed by” operator and it is used for initialization.
Operator “pre” is used to refer to the value of variable at
previous instant of time. Therefore the above equation
specifies that the initial value of variable N is 0 and thereafter
its value is one more than the previous value.

Fig. 1. SCADE Operator Diagram

SCADE model corresponding to above equation is shown

in Fig.1. A network of operators in SCADE can be
encapsulated as a new reusable operator that is called a node
or SCADE operator. The requirements of the system to be
implemented are mapped in the form of network of SCADE
operators, where each operator provides a specific
functionality independently or by interaction with the other
SCADE operators.

The set of dataflow equations contained in a SCADE
operator are all evaluated simultaneously when that operator is
instantiated.

III. DEVELOPMENT OF THE MODEL FOR SGPCS IN SCADE
The processing logic of the SGPCS can be categorized as

Signal Processing Logic and Control Logic
This is shown schematically in Fig. 2. For all the important

processes parameters, triplicate or quadruplicate
measurements are provided. Signal processing logic performs
the validation of input signals and generation of
“representative” (good) signal for each input parameter from
multiple measurements rejecting where necessary any faulty
measurements, to ensure reliable operation even in case of
some sensor failures. Control logic involves the
implementation of process control algorithm for SGPC system.
The “representative” signals from signal processing logic are
the inputs to the control logic and it generates the required
control signal for Turbine Governor Valves (TGVs),
Condenser Steam Dump Valves (CSDVs) and Atmospheric
Steam Discharge Valves (ASDVs). The formal model has
been developed in SCADE only for the Application Control

Logic since this component could be cleanly substituted in old
implementation without any other modification. The equations
expressing relationship between output and input variables
were grouped and implemented graphically in SCADE as
different nodes, according to the functionality they provide. In
this way the SCADE model is modularized and these modules
can be reused in other implementation. The representative
signals for all the discrete and analog inputs that are used in
the model are read from the interface of the signal processing
logic already implemented in the existing code.

Fig. 2. SGPCS Inputs and Outputs

Control Logic is divided into nodes. The nodes, which

generate actual control signals are Calc_NLSP,
Calc_Control_Signal and Calc_ASDV_Control_Signal. The
function of these nodes is to generate “No Load Set Point
(NLSP)”, “Control Signal for TGVs and CSDVs” and
“Control signal for ASDVs” respectively as shown in Fig.3.

Fig. 3. SCADE Nodes and Data Flow

Calc_Control_Signal is the most complicated node because

this node implements the algorithm for computation of

pressure set point (OPSP) for SG and calculates the control
signal by applying PID control algorithm to the error signal.
The brief overview of node Calc_Control_Signal is depicted
in Fig.4.

Fig. 4. Schematic of SCADE Node Calc_Control_Signal

 The lower level nodes realize the control functionalities

like PID control within Calc_Control_Signal, lookup tables
and range conversion algorithms. Fig 5 shows the hierarchical
architecture of the SCADE model of SGPCS, along with the
coupling among nodes and number of instances of each node.

Fig. 5. Hierarchical architecture of SCADE model of SGPCS

IV. VALIDATION OF SGPCS MODEL
The validation of SGPCS model is done by simulating the

SCADE model. We have to apply a sequence of input vectors
to test a given system behavior. The trend of outputs with the
applied input sequence is observed and compared with the
expected outputs, for analyzing the correctness of the model.

Each test sequence that may expand over several cycles is
stored as a separate scenario file. The scenario file stores the
value of all the input vectors applied during each cycle. The
scenario files are useful to automatically regenerate the
previously conducted test whenever required.

To assess how thoroughly the behavior of the model is
simulated, we have used Model Test Coverage (MTC). MTC
is a SCADE Suite module, which allows measuring the
coverage of model during model simulation activity. SCADE
MTC analyzer uses MC/DC [6] structural coverage criteria to
assess the model coverage. The MTC is done by using the
scenario files stored during the model simulation. The use of
scenario files ensures that the same test cases are applied
during simulation and MTC. Hence the coverage results
observed after MTC shows that how extensively the behavior
of the model was simulated and points out the part of the
model that was not covered during model simulation. We can
then design new test cases for covering those parts of the
model that are not covered. By applying test cases as per the
previously prepared test plan, we could achieve 97 percent
model coverage.

From the analysis of the operators that were not tested
using the test plan, we designed new test cases for increasing
the model coverage. An example for derivation of such a test

case can be illustrated using the Fig.6. Each operator in the
figure is labeled with an instance number to distinguish
between two instances of same operator. So to indentify each
operator uniquely during illustration, we have used operator
name followed by its instance number e.g. the AND operator
labeled with instance number 2 will be depicted as AND2.
Similarly the inputs of each operator are identified as I1,
I2…In, depicting 1st, 2nd … nth input respectively. In the
figure below MTC shows that the operator AND2 is not
covered completely. According to the MC/DC criteria the
three input AND gate, having inputs I1, I2 and I3 is said to be
covered completely if the following conditions are simulated.

• I1, I2 and I3 are true
• Only I1 is false
• Only I2 is false
• Only I3 is false
The coverage analysis shows that, for the operator AND2

the condition “Only I2 is false” was not simulated. From the
Fig.6 it could be determined that to simulate this condition, we
should have an input combination where NOT(ASDV_auto) is
true, NOT(ASDV_HC) is false and ASDV_CM_raise is true.
This derived input test vector is added to the test plan to
increase the model coverage.

Fig. 6. Derivation of Test Case from the Result of MTC

Fig. 7. Part of Calc_Control_Signal node

We have also observed that some conditions required to
completely cover the operator according to MC/DC criteria
were physically infeasible. Fig.7 shows one such condition.
The MTC in this figure shows that the operator AND6 is not
covered because the condition “only I1 is false” was not
simulated. To simulate this condition, input I1 for operator
AND6 should be false keeping inputs I2 and I3 as true. I2 for
the AND6 is output of operator timer1. The output of timer1
operator becomes true only if input is true for specified time
interval or more; otherwise its output is false. So it can be
determined that if I1 is false then output of timer1 will be false
and hence I2 will also be false i.e. whenever I1 is false, I2 will
also be false. So we cannot design test case, which simulates
the condition “only I1 false” for the operator AND6.

Infeasible scenarios as described above had to be left out
and hence it was possible to achieve 99.8 percent model
coverage.

V.

A. Property1

B. Property2
FORMAL VERIFICATION OF REQUIREMENTS OF SGPCS

The verification of the SGPCS model was carried out by
using the formal verification technique called model checking.
It involves expressing a system requirement as a property and
checking whether property is satisfied by the model. Each of
the properties to be verified was modeled as an “observer
node” using built-in SCADE verification operators. The
composition of “observer node” with the system model was
used for model checking using the SCADE Design Verifier.

Some of the important system properties of SGPCS that
were formalized and verified are explained below. Each
property is first stated in English as it appears in specification

followed by brief explanation. Later the property is stated
formally using SCADE notation and explanation is provided
whenever required.

If manual_crash_cool or auto_crash_cool signal is true
then No Load Set Point (NLSP) should decrease till lower
saturation limit (100.0) is reached.

The signals manual_crash_cool and auto_crash_cool are
two discrete inputs, which are used to maneuver the pressure
setpoint (NLSP) during some emergency condition. If at least
one of these inputs is true then NLSP is decreased till the
limiter clamps the value of NLSP to 100.0

Formal Specification of the property1 in SCADE is shown
in Fig.8. In figure the block “verif::implies” implements the
mathematical implication (p→q). The first input denotes ‘p’
and second input denotes ‘q’. The output of the block is true if
(p→q) holds. The output of this block is assigned to the
Boolean output property1.

If NLSP_lower and NLSP_raise both signals are true then
NLSP should decrease till lower limit (100.0) is reached.

The signals NLSP_lower and NLSP_raise are discrete
inputs used to lower and raise the value of NLSP respectively,
however if both the signals are true simultaneously then
NLSP_lower signal must have a higher priority over
NLSP_raise.

Formal Specification of the property2 is shown in Fig.9.

Fig. 8. SCADE Observer for Property1

Fig. 9. SCADE Observer for Property2

C. Property3
If the loss_of_electric_load or turbine_trip signal is true

and reactor power exceeds 20% Full Power then Anticipatory
Action (AA) should start and should get completed in time
T1+T2, where T1 and T2 are predefined constants. AA lowers
the operational set point (OPSP) in proportion to reactor
power based on the following equation.

OPSP = NLSP - K * ∆T
The variation of K before, during and after AA is shown in

Fig.10, where K1 and K2 are positive constants.
The signals loss_of_electrical_load and turbine_trip are

the discrete inputs to the SGPC model, which decide the
condition for start and termination of AA

Fig.10 Timing diagram for Anticipatory Action

In SCADE, the time is measured in terms of number of

execution cycles. The number of execution cycles in time
T1+T2 can be determined by dividing time T1+T2 by

sampling time (0.175 sec). The value of T1 and T2 is 1 and 2
respectively. Hence the number of execution cycles is
(1+2)/0.175 = 17.14 = 17. However Fig.10 shows that the
value of K at the first and last cycles is equal to K1. Therefore
the number of cycles during which AA will be present is two
less than the calculated number of cycles in time (T1+T2).
Hence AA should appear for (17-2) =15 cycles”.

Formal Specification of the property3 in SCADE is shown

in Fig.11. In figure the block specifies an if-else
condition as “O1= if C1 then I1 else I2”. The block
verif::AfterNthTick is used to express that the output equals
input, except for the first N (N=1) cycles during which the
output is true. The block verify::AtLeastNTicks express that
the output equals the input as soon as the input is true for
N=15 cycles, before that the output is false. Similarly the
block verify::HasNeverBeenTrue is used to express that the
output becomes false as soon as its input becomes true for the
first time, after this cycle the output remains false.

D. Property4
Anticipatory action is discontinued after a reactor trip or

when both initiating conditions i.e. loss_of_electrical_load
and turbine_trip are not true.

This property specifies the condition for the termination of
anticipatory action. Thus if required condition for anticipatory
action does not exist or if it disappears then anticipatory action
will terminate.

The formal specification of the property4 in SCADE is
shown in Fig.12.

Fig.11. SCADE Observer for Property3

Fig.12. SCADE Observer for Property4

E. Property5
If ASDV is in computer manual mode (i.e. ASDV is neither

in auto mode nor in hand controller mode) and
a) ASDV_CM_raise is true and ASDV_CM_lower is false

then ASDV_control_signal will increase.
b) ASDV_CM_raise and ASDV_CM_lower both are true

then ASDV_control_signal will remain unchanged.
c) ASDV_CM_raise is false and ASDV_CM_lower is true

then ASDV_control_signal will decrease.
The final control signal for ASDVs is calculated based on

the mode of operation. ASDVs can be in one of the three
modes: auto, hand control or computer manual, which are
selected from a three-position switch. Hence in the model the
mode is determined by two input variables ASDV_auto and
ASDV_HC. If input ASDV_auto is true then mode is auto, if
input ASDV_HC is true then mode is hand controller and if

both inputs are false then mode is computer manual. Inputs
ASDV_CM_raise and ASDV_CM_lower are used to raise
and lower the ASDV_control_signal respectively.

The formal specification of the property5 in SCADE is
shown in Fig.13. The property could not be proved and a
counter example was generated. The property could not be
proved because the specification does not place any restriction
on mode of ASDV in the instant before coming to computer
manual mode. Therefore if in the previous instant the mode
was other than computer manual the control signal values
before and after mode change do not conform to the property
specification. The model was later corrected to implement the
bumpless transfer functionality.

The time required for verification of these properties was
found to be less than 10 seconds on a XEON Server with 4GB
RAM.

Fig.13. SCADE Observers for Property5a, Property5b and Property5c

VI.

VII.

 CODE GENERATION AND INTEGRATION
SCADE environment provides IEC61508 SIL3 certified

automatic code generator (KCG). The verified model was
used to generate the C code automatically. The use of certified
code generator ensures that every specification in the model is
correctly reflected in the code, which eliminates the need for
unit testing.

The SGPC module developed using SCADE was integrated
with prototype system in the lab. This was done by replacing
old handwritten SGPC code by the one developed with
SCADE.

Two identical hardware based controller setups were
available. One was loaded with the old handwritten SGPC
code. This implementation is in use for several years. The
other controller was loaded with automatically generated code
from the SCADE model. There was no discrepancy observed
in the output of these two systems during testing.

The final size of the executable generated was ~163 KB
whereas the size of old executable was ~167 KB, which was
comparable

CONCLUSION AND FUTURE WORK
This methodology is suitable for the systems whose output

behavior involves cyclic executions of read, compute and
output. Software based controllers used in embedded control
applications typically fall in this class of systems. It has been
our experience that it is quite easy to adopt the methodology
in the design life cycle of such software and comply with the
recommended practices of IEC60880. This is because the
SCADE environment supports a formal language and has tool
support for testing the model conforming to MC/DC structural
coverage and formal verification. The availability of IEC
61508 SIL3 certified code generator has reduced the code
generation effort to a push button and there is no effort
required for low level testing. It must be emphasized that once
the model is validated and code is generated from the model,
it is not recommended to do any manual changes in the
generated code. The availability of certified code generator is
a great advantage over the other traditional development
methodologies (e.g. UML) involving modeling language
having less formal semantic foundation. The lack of
semantics in such modeling language hinders complete
automated code generation and hence no certifiable code
generation is possible for the entire modeling language.

During formal verification, it was observed that most of the
time was spent on reviewing property expressed in SCADE
with corresponding English specification. Although the tool
supports an easy to use interface to the back end verification
engine, the user is expected to know the limitations of formal
verification of systems involving integer, real and nonlinear
arithmetic. The verification engine supports two kinds of
verification; debug mode, which involves bounded model
checking [9] and proof mode involving exhaustive verification.
A property which is shown to be true in debug mode (bounded

by given depth) should not be assumed to be true under all
possible cycles of execution. The proof strategy can take
enormous amount of time (may not terminate in a bounded
time) if the property is not verifiable within certain search
depth because the system may have very large state space.
The verification interface provides strategy options for
terminating the search if the verification is not successful
within a specified amount of time.

SCADE supports predefined operators for specifying
verification conditions. However formal logics such as LTL
are more expressive and it is possible to express properties
much more succinctly in these notations. For example, the
property 3, in section V.C, could have been specified as (s →
(p U15 q)), where s is the initiating event (turbine trip or loss
of electrical power), p is the Boolean condition for
anticipatory action and q is the Boolean condition signifying
the end of anticipatory action. The sub-expression p U15 q in
the verification condition demands that p is true for 15 ticks
and henceforth q is true and the complete property states that
if s is true and remains true then p shall remain true for 15
ticks and subsequently q shall remain true. It is felt that such
properties are difficult to express using standard SCADE
blocks. SCADE does not support a tool that can translate
specifications in such logic as explained above into equivalent
SCADE property observers. In future we plan to develop such
a property synthesis tool and integrate in the SCADE
environment.

ACKNOWLEDGMENT
We are thankful to Mr. G.P. Srivastava, Director E&I

Group and Mr. B.B. Biswas, Head RCnD, BARC, for their
encouragement during this work. We are thankful to Mr. C.K.
Pithwa, Head, CCDS, RCnD, for providing us the initial
specification of SGPCS from which the formal model has
been developed. Thanks are also due to Mrs. Ratna Bhamra
for helping us to understand the initial specifications.

REFERENCES
[1] Unified Modeling Language http://www.omg.org/technology/

documents/ formal/ uml.htm.
[2] N. Halbwachs, Synchronous programming of reactive systems. Kluwer

Academic Pub, 1993.
[3] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The synchronous

dataflow programming language Lustre. Proceedings of the IEEE,
vol. 79(9). September 1991.

[4] SCADE Tool http://www.esterel-technologies.com/.
[5] SCADE Language Reference Manual, Ver 6.1, Esterel Technologies

Ltd., France
[6] SCADE User Manual, Ver 6.1, Esterel Technologies Ltd., France
[7] S. Glasstone and A. Sesonske Nuclear Reactor Engineering, Chapman

& Hall, New York.
[8] Software Requirement Specification for DPHS-PCS Rev 2 USI 63000

Internal Document RCnD, BARC, Feb. 2005
[9] A.Biere, et.al., Bounded Model Checking Vol. 58, Advances in

Computers, 2003 (Academic Press)

http://www.esterel-technologies.com/

