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Abstract—The approach used in model based design is to build 

the model of the system in graphical/textual language. In older 
model based design approach, the correctness of the model is 
usually established by simulation. Simulation which is analogous 
to testing, cannot guarantee that the design meets the system 
requirements under all possible scenarios. This is however 
possible if the modeling language is based on formal semantics so 
that the developed model can be subjected to formal verification 
of properties based on specification. The verified model can then 
be translated into an implementation through reliable/verified 
code generator thereby reducing the necessity of low level testing. 
Such a methodology is admissible as per guidelines of IEC60880 
standard applicable to software used in computer based systems 
performing category A functions in nuclear power plant and 
would also be acceptable for category B functions. 

In this paper, we present our experience in implementation 
and formal verification of important controllers used in the 
process control system of a nuclear reactor. We have used the 
SCADE environment to model the controllers. The modeling 
language used in SCADE is based on the synchronous dataflow 
model of computation. A set of safety properties has been 
verified using formal verification technique. 

I. INTRODUCTION 
The approach used in model based design is to build the 

model of application in some modeling language and then 
obtain the implementation in a programming language 
automatically using code generator. In older model based 
approach (e.g. UML tools [1]), the correctness of the model is 
mainly established by simulation. However simulation cannot 
guarantee that the design meets the system requirements under 
all possible scenarios. This is possible only if the modeling 
language is based on formal semantics and the model can be 
subjected to formal verification of system properties, which 
are derived from system requirements. Verification of these 
properties establishes that the model meets the system 
requirements. Such a model driven design methodology where 
the modeling language has formal semantics and environment 
supports formal verification of properties is termed here as 
Formal Model Based Design Approach.   

The advantage of this approach is that, any change in the 
requirement can be directly introduced in the model and 
verified (both via simulation and formal verification) before 
code is generated automatically, thereby keeping the 
implementation in sync with the design. This is a significant 
advantage in implementing change requests.  

Such methodology for the development of software used in 
safety class applications conforms closely to the design 
guidelines recommended by IEC60880. In fact since it is 
possible to rigorously verify safety properties, the design 
process can meet most of the guidelines in appendix E of 
IEC60880.  Since use of formal model based technique 
represented methodology change, it was decided to carry out 
implementation for two important controllers for which earlier 
implementation existed for comparative purposes. SCADE [4], 
a model based design environment was chosen for this 
purpose. SCADE supports a graphical modeling language 
having an underlying formal semantics defined on 
synchronous dataflow model of computation. The SCADE 
environment also supports model simulation, model test 
coverage (MTC) analyzer, formal verification tool and 
certified code generator. It allows model verification through 
interactive simulation and formal verification. Another 
important aspect is that the SCADE models are built using 
graphical notation that is easily understood, thus greatly 
helping to simplify review of models by control engineers. 

Two controllers viz Steam Generator Pressure Controller 
(SGPC) and Primary Heat Transport Pressure Controller 
(PHTPC) were selected for implementation. These controllers 
were earlier implemented using conventional software 
development techniques and are in actual use.  In that way it 
was possible for us to compare the effectiveness of the new 
technique. The complete development process was followed 
which included modeling, simulation, test coverage 
measurement and code generation. This was followed by 
testing in target hardware with I/O simulation. For the 
verification of safety properties the SCADE Design Verifier 
was used. Two controllers were implemented using SCADE 
but only SGPC controller is used as example in the following. 
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The paper is organized as follows: Section II provides the 
background containing brief descriptions of SGPC controller 
and SCADE specification language. Section III describes 
formal model development. Validation of SCADE model 
using simulation and MTC is described in section IV. Section 
V describes formal verification of SGPCS model by 
specifying and proving safety properties. Section VI describes 
code generation and integration and finally section VII gives 
the brief report of experience gained and future work. 

II. 

A. 

B. 

BACKGROUND 

Process Control Systems in Nuclear Reactor  
The objective of SGPCS (Steam Generator Pressure 

Control System) [7, 8] is to regulate the steam generator (SG) 
pressure by controlling the total amount of steam drawn from 
the SG. The heat input to the SG through Primary Heat 
Transport system is a function of reactor power, which is 
controlled independently. When the energy in the steam 
drawn from SG equals the energy released from reactor fuel 
into the primary coolant, the primary fluid temperature and 
steam temperature (and hence the pressure) are maintained at 
steady values. The steam pressure regulation is achieved by 
controlling the valves in various steam lines taking steam to 
either the turbine (turbine governor valves TGVs) or dumping 
into condenser (condenser steam dump valves CSDVs) or 
discharging to atmosphere (atmospheric steam discharge 
valves ASDVs). So the objective of the SGPC system is to 
generate the control signals for valves specified above. The 
control signal is generated by applying PID control algorithm 
to the error signal calculated based on the difference between 
measured SG pressure and operational pressure setpoint 
(OPSP).  The operational pressure setpoint is function of 
reactor power and is calculated using no load setpoint (NLSP) 
and ∆T, the measured differential temperature across SG, 
which is a measure of reactor power. The main control signal 
is generated by applying PID control algorithm to the error, 
which is then split into three ranges to derive control signals 
for the three types of actuating valves i.e. TGVs, CSDVs and 
ASDVs. Since these controllers perform critical functions, the 
input measurements are triplicated /quadruplicated to provide 
redundancy. 

SCADE Specification Language   
The SCADE [4, 5] modeling notation supports Dataflow 

Equation and Safe State Machine for modeling the system. A 
dataflow equation describes the logical relationship between 
input and output variables. Safe state machine describes the 
control flow in the system in terms of state transitions. Set of 
dataflow equations are evaluated in parallel unless there is a 
data dependency between them. Internally the SCADE models 
are represented in SCADE textual language. SCADE textual 
language is based on the dataflow formalism, which is similar 
to the Synchronous dataflow language Lustre [3].  

Synchronous languages [2] are based on synchrony 
hypothesis, which assumes that the program is able to react to 
an external event, before any further event occurs. In dataflow 
language a program is described as network of operators 

transforming flows of data. SCADE model is graphically 
represented as network of operators. For example a basic 
counter that counts up from 0 can be expressed in SCADE 
textual language as 

N = 0 → pre (N) + 1; 
In above equation N is a variable that stores the value of 

counter at a given instance of time. The operator → is called 
the “followed by” operator and it is used for initialization. 
Operator “pre” is used to refer to the value of variable at 
previous instant of time. Therefore the above equation 
specifies that the initial value of variable N is 0 and thereafter 
its value is one more than the previous value.  

 

 
Fig. 1. SCADE Operator Diagram 

 
SCADE model corresponding to above equation is shown 

in Fig.1. A network of operators in SCADE can be 
encapsulated as a new reusable operator that is called a node 
or SCADE operator. The requirements of the system to be 
implemented are mapped in the form of network of SCADE 
operators, where each operator provides a specific 
functionality independently or by interaction with the other 
SCADE operators. 

The set of dataflow equations contained in a SCADE 
operator are all evaluated simultaneously when that operator is 
instantiated. 

III. DEVELOPMENT OF THE MODEL FOR SGPCS IN SCADE 
The processing logic of the SGPCS can be categorized as 

Signal Processing Logic and Control Logic  
This is shown schematically in Fig. 2. For all the important 

processes parameters, triplicate or quadruplicate 
measurements are provided. Signal processing logic performs 
the validation of input signals and generation of 
“representative” (good) signal for each input parameter from 
multiple measurements rejecting where necessary any faulty 
measurements, to ensure reliable operation even in case of 
some sensor failures. Control logic involves the 
implementation of process control algorithm for SGPC system. 
The “representative” signals from signal processing logic are 
the inputs to the control logic and it generates the required 
control signal for Turbine Governor Valves (TGVs), 
Condenser Steam Dump Valves (CSDVs) and Atmospheric 
Steam Discharge Valves (ASDVs). The formal model has 
been developed in SCADE only for the Application Control 



Logic since this component could be cleanly substituted in old 
implementation without any other modification. The equations 
expressing relationship between output and input variables 
were grouped and implemented graphically in SCADE as 
different nodes, according to the functionality they provide. In 
this way the SCADE model is modularized and these modules 
can be reused in other implementation. The representative 
signals for all the discrete and analog inputs that are used in 
the model are read from the interface of the signal processing 
logic already implemented in the existing code.   

 

 
Fig. 2. SGPCS Inputs and Outputs 

 
Control Logic is divided into nodes. The nodes, which 

generate actual control signals are Calc_NLSP, 
Calc_Control_Signal and Calc_ASDV_Control_Signal. The 
function of these nodes is to generate “No Load Set Point 
(NLSP)”, “Control Signal for TGVs and CSDVs” and 
“Control signal for ASDVs” respectively as shown in Fig.3. 

 

 
Fig. 3. SCADE Nodes and Data Flow 

 
Calc_Control_Signal is the most complicated node because 

this node implements the algorithm for computation of 

pressure set point (OPSP) for SG and calculates the control 
signal by applying PID control algorithm to the error signal. 
The brief overview of node Calc_Control_Signal is depicted 
in Fig.4. 

 

 
Fig. 4. Schematic of SCADE Node Calc_Control_Signal 

 
 The lower level nodes realize the control functionalities 

like PID control within Calc_Control_Signal, lookup tables 
and range conversion algorithms. Fig 5 shows the hierarchical 
architecture of the SCADE model of SGPCS, along with the 
coupling among nodes and number of instances of each node.  

 

 
Fig. 5. Hierarchical architecture of SCADE model of SGPCS 

 

IV. VALIDATION OF SGPCS MODEL 
The validation of SGPCS model is done by simulating the 

SCADE model. We have to apply a sequence of input vectors 
to test a given system behavior.  The trend of outputs with the 
applied input sequence is observed and compared with the 
expected outputs, for analyzing the correctness of the model. 



Each test sequence that may expand over several cycles is 
stored as a separate scenario file. The scenario file stores the 
value of all the input vectors applied during each cycle. The 
scenario files are useful to automatically regenerate the 
previously conducted test whenever required.  

To assess how thoroughly the behavior of the model is 
simulated, we have used Model Test Coverage (MTC). MTC 
is a SCADE Suite module, which allows measuring the 
coverage of model during model simulation activity. SCADE 
MTC analyzer uses MC/DC [6] structural coverage criteria to 
assess the model coverage. The MTC is done by using the 
scenario files stored during the model simulation. The use of 
scenario files ensures that the same test cases are applied 
during simulation and MTC. Hence the coverage results 
observed after MTC shows that how extensively the behavior 
of the model was simulated and points out the part of the 
model that was not covered during model simulation. We can 
then design new test cases for covering those parts of the 
model that are not covered. By applying test cases as per the 
previously prepared test plan, we could achieve 97 percent 
model coverage.  

From the analysis of the operators that were not tested 
using the test plan, we designed new test cases for increasing 
the model coverage. An example for derivation of such a test 

case can be illustrated using the Fig.6. Each operator in the 
figure is labeled with an instance number to distinguish 
between two instances of same operator. So to indentify each 
operator uniquely during illustration, we have used operator 
name followed by its instance number e.g. the AND operator 
labeled with instance number 2 will be depicted as AND2. 
Similarly the inputs of each operator are identified as I1, 
I2…In, depicting 1st, 2nd … nth input respectively. In the 
figure below MTC shows that the operator AND2 is not 
covered completely. According to the MC/DC criteria the 
three input AND gate, having inputs I1, I2 and I3 is said to be 
covered completely if the following conditions are simulated. 

• I1, I2 and I3 are true 
• Only I1 is false 
• Only I2 is false 
• Only I3 is false 
The coverage analysis shows that, for the operator AND2 

the condition “Only I2 is false” was not simulated. From the 
Fig.6 it could be determined that to simulate this condition, we 
should have an input combination where NOT(ASDV_auto) is 
true, NOT(ASDV_HC) is false and ASDV_CM_raise is true. 
This derived input test vector is added to the test plan to 
increase the model coverage.  

 
Fig. 6. Derivation of Test Case from the Result of MTC 

 
 

 
Fig. 7.  Part of Calc_Control_Signal node 



We have also observed that some conditions required to 
completely cover the operator according to MC/DC criteria 
were physically infeasible. Fig.7 shows one such condition. 
The MTC in this figure shows that the operator AND6 is not 
covered because the condition “only I1 is false” was not 
simulated. To simulate this condition, input I1 for operator 
AND6 should be false keeping inputs I2 and I3 as true. I2 for 
the AND6 is output of operator timer1. The output of timer1 
operator becomes true only if input is true for specified time 
interval or more; otherwise its output is false. So it can be 
determined that if I1 is false then output of timer1 will be false 
and hence I2 will also be false i.e. whenever I1 is false, I2 will 
also be false. So we cannot design test case, which simulates 
the condition “only I1 false” for the operator AND6. 

Infeasible scenarios as described above had to be left out 
and hence it was possible to achieve 99.8 percent model 
coverage. 

 

V. 

A. Property1 

B. Property2 
FORMAL VERIFICATION OF REQUIREMENTS OF SGPCS 

The verification of the SGPCS model was carried out by 
using the formal verification technique called model checking. 
It involves expressing a system requirement as a property and 
checking whether property is satisfied by the model. Each of 
the properties to be verified was modeled as an “observer 
node” using built-in SCADE verification operators. The 
composition of “observer node” with the system model was 
used for model checking using the SCADE Design Verifier. 

Some of the important system properties of SGPCS that 
were formalized and verified are explained below. Each 
property is first stated in English as it appears in specification 

followed by brief explanation. Later the property is stated 
formally using SCADE notation and explanation is provided 
whenever required. 

If manual_crash_cool or auto_crash_cool signal is true 
then No Load Set Point (NLSP) should decrease till lower 
saturation limit (100.0) is reached.  

The signals manual_crash_cool and auto_crash_cool are 
two discrete inputs, which are used to maneuver the pressure 
setpoint (NLSP) during some emergency condition. If at least 
one of these inputs is true then NLSP is decreased till the 
limiter clamps the value of NLSP to 100.0 

Formal Specification of the property1 in SCADE is shown 
in Fig.8. In figure the block “verif::implies” implements the 
mathematical implication (p→q). The first input denotes ‘p’ 
and second input denotes ‘q’. The output of the block is true if 
(p→q) holds. The output of this block is assigned to the 
Boolean output property1. 

If NLSP_lower and NLSP_raise both signals are true then 
NLSP should decrease till lower limit (100.0) is reached. 

The signals NLSP_lower and NLSP_raise are discrete 
inputs used to lower and raise the value of NLSP respectively, 
however if both the signals are true simultaneously then 
NLSP_lower signal must have a higher priority over 
NLSP_raise. 

Formal Specification of the property2 is shown in Fig.9. 
 

 
Fig. 8. SCADE Observer for Property1 

 
 
 

 
Fig. 9. SCADE Observer for Property2 

 

 

 



C. Property3 
If the loss_of_electric_load or turbine_trip signal is true 

and reactor power exceeds 20% Full Power then Anticipatory 
Action (AA) should start and should get completed in time 
T1+T2, where T1 and T2 are predefined constants. AA lowers 
the operational set point (OPSP) in proportion to reactor 
power based on the following equation. 

OPSP = NLSP - K * ∆T 
The variation of K before, during and after AA is shown in 

Fig.10, where K1 and K2 are positive constants.  
The signals loss_of_electrical_load and turbine_trip are 

the discrete inputs to the SGPC model, which decide the 
condition for start and termination of AA 

 

 
Fig.10 Timing diagram for Anticipatory Action 

 
In SCADE, the time is measured in terms of number of 

execution cycles. The number of execution cycles in time 
T1+T2 can be determined by dividing time T1+T2 by 

sampling time (0.175 sec). The value of T1 and T2 is 1 and 2 
respectively. Hence the number of execution cycles is 
(1+2)/0.175 = 17.14 = 17. However Fig.10 shows that the 
value of K at the first and last cycles is equal to K1. Therefore 
the number of cycles during which AA will be present is two 
less than the calculated number of cycles in time (T1+T2). 
Hence AA should appear for (17-2) =15 cycles”. 

Formal Specification of the property3 in SCADE is shown 

in Fig.11. In figure the block  specifies an if-else 
condition as “O1= if C1 then I1 else I2”. The block 
verif::AfterNthTick is used to express that the output equals 
input, except for the first N (N=1) cycles during which the 
output is true. The block verify::AtLeastNTicks express that 
the output equals the input as soon as the input is true for 
N=15 cycles, before that the output is false. Similarly the 
block verify::HasNeverBeenTrue is used to express that the 
output becomes false as soon as its input becomes true for the 
first time, after this cycle the output remains false.  

 

D. Property4 
Anticipatory action is discontinued after a reactor trip or 

when both initiating conditions i.e.  loss_of_electrical_load 
and turbine_trip are not true.  

This property specifies the condition for the termination of 
anticipatory action. Thus if required condition for anticipatory 
action does not exist or if it disappears then anticipatory action 
will terminate. 

The formal specification of the property4 in SCADE is 
shown in Fig.12.  

 
Fig.11. SCADE Observer for Property3 

 
 



 
Fig.12. SCADE Observer for Property4 

 

E. Property5 
If ASDV is in computer manual mode (i.e. ASDV is neither 

in auto mode nor in hand controller mode) and  
a) ASDV_CM_raise is true and ASDV_CM_lower is false 

then ASDV_control_signal will increase.  
b) ASDV_CM_raise and ASDV_CM_lower both are true 

then ASDV_control_signal will remain unchanged. 
c) ASDV_CM_raise is false and ASDV_CM_lower is true 

then ASDV_control_signal will decrease.  
The final control signal for ASDVs is calculated based on 

the mode of operation. ASDVs can be in one of the three 
modes: auto, hand control or computer manual, which are 
selected from a three-position switch. Hence in the model the 
mode is determined by two input variables ASDV_auto and 
ASDV_HC. If input ASDV_auto is true then mode is auto, if 
input ASDV_HC is true then mode is hand controller and if 

both inputs are false then mode is computer manual. Inputs 
ASDV_CM_raise and ASDV_CM_lower are used to raise 
and lower the ASDV_control_signal respectively. 

The formal specification of the property5 in SCADE is 
shown in Fig.13. The property could not be proved and a 
counter example was generated. The property could not be 
proved because the specification does not place any restriction 
on mode of ASDV in the instant before coming to computer 
manual mode. Therefore if in the previous instant the mode 
was other than computer manual the control signal values 
before and after mode change do not conform to the property 
specification. The model was later corrected to implement the 
bumpless transfer functionality. 

The time required for verification of these properties was 
found to be less than 10 seconds on a XEON Server with 4GB 
RAM. 

 
Fig.13. SCADE Observers for Property5a, Property5b and Property5c 



VI.

VII. 

 CODE GENERATION AND INTEGRATION 
SCADE environment provides IEC61508 SIL3 certified 

automatic code generator (KCG). The verified model was 
used to generate the C code automatically. The use of certified 
code generator ensures that every specification in the model is 
correctly reflected in the code, which eliminates the need for 
unit testing.  

The SGPC module developed using SCADE was integrated 
with prototype system in the lab. This was done by replacing 
old handwritten SGPC code by the one developed with 
SCADE.  

Two identical hardware based controller setups were 
available. One was loaded with the old handwritten SGPC 
code. This implementation is in use for several years. The 
other controller was loaded with automatically generated code 
from the SCADE model. There was no discrepancy observed 
in the output of these two systems during testing. 

The final size of the executable generated was ~163 KB 
whereas the size of old executable was ~167 KB, which was 
comparable 

CONCLUSION AND FUTURE WORK 
This methodology is suitable for the systems whose output 

behavior involves cyclic executions of read, compute and 
output. Software based controllers used in embedded control 
applications typically fall in this class of systems. It has been 
our experience that it is quite easy to adopt the methodology 
in the design life cycle of such software and comply with the 
recommended practices of IEC60880. This is because the 
SCADE environment supports a formal language and has tool 
support for testing the model conforming to MC/DC structural 
coverage and formal verification. The availability of IEC 
61508 SIL3 certified code generator has reduced the code 
generation effort to a push button and there is no effort 
required for low level testing. It must be emphasized that once 
the model is validated and code is generated from the model, 
it is not recommended to do any manual changes in the 
generated code. The availability of certified code generator is 
a great advantage over the other traditional development 
methodologies (e.g. UML) involving modeling language 
having less formal semantic foundation.   The lack of 
semantics in such modeling language hinders complete 
automated code generation and hence no certifiable code 
generation is possible for the entire modeling language. 

During formal verification, it was observed that most of the 
time was spent on reviewing property expressed in SCADE 
with corresponding English specification.  Although the tool 
supports an easy to use interface to the back end verification 
engine, the user is expected to know the limitations of formal 
verification of systems involving integer, real and nonlinear 
arithmetic. The verification engine supports two kinds of 
verification; debug mode, which involves bounded model 
checking [9] and proof mode involving exhaustive verification. 
A property which is shown to be true in debug mode (bounded 

by given depth) should not be assumed to be true under all 
possible cycles of execution. The proof strategy can take 
enormous amount of time (may not terminate in a bounded 
time) if the property is not verifiable within certain search 
depth because the system may have very large state space.  
The verification interface provides strategy options for 
terminating the search if the verification is not successful 
within a specified amount of time. 

SCADE supports predefined operators for specifying 
verification conditions. However formal logics such as LTL 
are more expressive and it is possible to express properties 
much more succinctly in these notations. For example, the 
property 3, in section V.C, could have been specified as (s  →  
(p U15 q)), where s is the initiating event (turbine trip or loss 
of electrical power), p is the Boolean condition for 
anticipatory action and q is the Boolean condition signifying 
the end of anticipatory action. The sub-expression p U15 q in 
the verification condition demands that p is true for 15 ticks 
and henceforth q is true and the complete property states that 
if s is true and remains true then p shall remain true for 15 
ticks and subsequently q shall remain true. It is felt that such 
properties are difficult to express using standard SCADE 
blocks. SCADE does not support a tool that can translate 
specifications in such logic as explained above into equivalent 
SCADE property observers. In future we plan to develop such 
a property synthesis tool and integrate in the SCADE 
environment. 
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