
 

 

 

 

FAST ABSTRCT: A Study on SFMEA Method for UML-Based Software 
 

Zhang Hong                                                      Wang Wentao  
Dept. of System Engineering of Engineering Technology                          Quality Department 

      Beihang University                                    Southwest Institute of Electronic Equipment 

Beijing, P. R. China, 100191                                     Chengdu, P. R. China, 610036 
zh@buaa.edu.cn                                                             wwtjun@gmail.com 

 

 

Abstract 

As one of the most important methods to improve 

software reliability and safety, Software Failure Modes 

and Effects Analysis (SFMEA) has been increasingly 

applied to software products in many fields. Meanwhile, 

the Unified Modeling Language (UML) has become the 

main design language for Object-Oriented software, with 

Rational Unified Process(RUP) as the most often used 

development process model. While traditional methods of 

SFMEA are not suitable for software developed in UML. 

In this paper, we present a method of SFMEA applicable 

to UML-based software, covering the main core 

workflows in RUP, e.g. the requirement, analysis and 

design workflows. 

1. Introduction 

Software Failure Modes and Effects Analysis 

(SFMEA) is a bottom-up analysis method to identify the 

consequences of possible software failure modes on 

software systems. As a major method of software 

analysis, SFMEA has been playing an important role in 

improving software reliability and safety.  

Meanwhile, the Unified Modeling Language (UML) 

has become the main design language in the software 

industry, and the Rational Unified Process (RUP), where 

UML is usually applied, has been adopted by many 

corporations. Traditional methods of SFMEA are not 

suitable for software developed in UML. Therefore, we 

see a great need for study on SFMEA for UML-based 

software.  

However, research dedicated to this field still remains 

very few and incomprehensive. In 2004 Nathaniel 

Ozarin[1] discussed in his paper the relationships among 

software development stages, UML diagrams and FMEA 

levels (method, class, module and package), but didn’t 

focus on the concrete process to perform SFMEA with 

UML diagrams. In the same year, Herbert Hecht[2] 

described in his paper the application of UML to SFMEA 

during the concept phase and the implementation phase 

respectively. But he used the use case diagrams and class 

diagrams only, without using dynamic diagrams such as 

activity diagrams and sequence diagrams, etc. 

 In this paper, a method to perform SFMEA for UML-

based software is presented, covering the main core 

workflows in RUP.  

2. Approach 

 In order to find software defects and weak links as 

early as possible, SFMEA should be performed primarily 

in the inception phase and elaboration phase of RUP, 

instead of the construction phase and transition phase. The 

basic process of SFMEA in RUP for UML-based software 

is not different from traditional method, but the 

characteristic of RUP determines that the analysis results 

of SFMEA will be refined and extended with the 

incremental and iterative development process.  

In each RUP phase, there are five core workflows, 

which could be used alternately during each iterating 

development process. We focused our study on three core 

workflows, i.e. the requirement, analysis and design 

workflows. Therefore, the SFMEA method for UML-

based software is discussed basing on the characteristics 

of UML models used in these three core workflows in 

RUP respectively.  

We analyzed the links between SFMEA elements and 

UML models in each core workflow. Upon this, the 

analysis basis for SFMEA in each core workflow is 

identified, as shown in table 1. 

 

Copyright ISSRE 2009

mailto:zh@buaa.edu.cn
mailto:wwtjun@gmail.com


Table 1 Links between SFMEA and UML  

RUP workflow 
UML models as basis for 

SFMEA 

Requirement workflow Use case diagram 

Analysis workflow 

Class diagram  

Collaboration  diagram 

Sequence diagram  

Activity diagram 

Design workflow 
Class diagram  

Sequence diagram 

  

Then, the analysis methods in each of these three core 

workflows in RUP are described respectively as follows. 

In the requirement workflow of RUP, software 

requirements are described primarily with use case 

diagrams. Thus SFMEA in this workflow can be 

implemented according to the use case diagrams. The 

analysis level can be determined with use case diagrams, 

and use cases can be considered as analysis items. For 

each analysis item, failure modes can be identified basing 

on its function and performance requirements. Failure 

effects are traced basing on the interrelationship among 

use cases, and sometimes activity diagrams can also be 

used to trace the failure effects. 

In the analysis workflow of RUP, activity diagrams, 

sequence diagrams and class diagrams are mostly often 

used to describe the structure and functions of a system. 

Therefore, there are two ways to perform SFMEA in this 

workflow.  

One way is based on activity diagrams and use case 

diagrams, in which activity diagrams of a use case are 

used to identify analysis level, and activities are 

considered as analysis items. Failure effects on the system 

can be traced from activity level to use case level and use 

case diagram level successively. 

 The other way is based upon use case diagrams and 

sequence diagrams, where sequence diagrams can be used 

to identify analysis level, and messages can be considered 

as analysis items. Failure effects on the system can be 

traced from message level to use case level and use case 

diagram level successively. 

In the design workflow of RUP, system model is 

extended and refined to describe class attributes, methods 

and relationship between classes on the basis of class 

diagrams. And sequence diagrams are often used to 

describe the collaboration among objects and message 

calling process. SFMEA in this workflow is based upon 

use case diagrams, sequence diagrams and class diagrams, 

where analysis level is identified with class diagrams, 

which are more refined than in analysis workflow, and 

messages are considered as analysis items. Failure effects 

can be traced from message level to use case level and use 

case diagram level successively. 

Finally, we use a case study to illustrate the 

effectiveness of SFMEA method for UML-based software 

presented in this paper. The case study shows that several 

software defects have been found through SFMEA during 

the requirement, analysis and design workflows. 

3. Conclusions and Future Work 

We proposed a SFMEA method for UML-based 

software in the main core workflows of RUP, i.e. the 

requirement, analysis and design workflows. In each core 

workflow, the methods to identify the analysis levels and 

analysis items, and to trace the failure effects are 

discussed. 

As future work, we shall continue our research to 

include other UML diagrams in the analysis to obtain 

more precise and complete analysis results. This should 

also lead to further improvements in the analysis method. 

Furthermore, detailed SFMEA for UML-based software 

should also be studied, which could be used to verify the 

effectiveness of system SFMEA and expose more defects 

in software products. Our ultimate goal is to establish a 

set of comprehensive SFMEA approaches applicable to 

the UML-based software in the whole development 

process of RUP. 

4. References 

[1] Nathaniel Ozarin. Failure Modes and Effects Analysis during 

Design of Computer Software [J]. The annual Reliability and 

Maintainability  symposium. IEEE, 2004: 201-206  
[2] Herbert Hecht, Xuegao An, Myron Hecht. Computer Aided 

Software FMEA for Unified Modeling Language Based 

Software [J]. The annual Reliability and Maintainability 

symposium. IEEE, 2004: 243-248 
[3] Bowles, J.B., The new SAE FMECA standard. The Annual 

Reliability and Maintainability Symposium [C]. IEEE, 1998: 

48–53. 

[4] Haapanen Pentti, Helminen Atte, Failure modes and effects 
analysis of software based automation systems [C],  STUK-

YTO-TR 190, 2002.8 

[5] Peter L.Goddard. Software FMEA Techniques [J]. Reliability 

and Maintainability Symposium. Jan.2000: 118-123 
[6] Lutz, R.R., Woodhouse, R.M. Contributions of SFMEA to 

Requirements Analysis [J]. Proceedings of the Second 

International Conference. April 1996: 44 – 51 

 


