
Effective Unit Test Design and Automated Debugging

PVR Murthy

Corporate Technology

Siemens

Bangalore, India

Abstract— There exist several unit test tools such as JUnit,

however, besides the suggestion that assertions can be specified

to reflect properties that must be satisfied at different program

points, there is no guidance to testers and developers about

how to design tests effectively that can be used with such tools.

This paper provides a systematic basis for testing a component

or a function by defining each test to be a partitioned <pre-

condition, postcondition> pair. Automated debugging is also

possible by computing the actual program states in the

forward direction and the hypothesized program states in the

backward direction and identifying the statement where an

error is present.

Keywords- Assertions, trace, coverage, debugging

I. INTRODUCTION

There are many unit test tools available such as JUnit

for Java and NUnit for C# [1,2]. The essential methodology

here is to write and place assertions at desired points in the

code of a function. During the run of a test, it can be verified
whether the state of computation satisfies the specified

assertions. However, there has not been much discussion on

systematic methods to design tests for use with NUnit or

JUnit to test components or methods.

The input domain of a function can be expressed as a union

of predicates corresponding to different partitions , each

predicate representing a set of values that the input

parameters may assume in a partition. Whether the

partitions are formed based on equivalence class

partitioning, or, boundary value analysis , or some other

method, each partitioning of the input domain represents a

class of tests. Given a corresponding expected result

condition, or test oracle, for each partitioning predicate, the

specification of each test is available as a <pre-condition,

postcondition> pair, where the pre-condition corresponds to

the partitioning predicate and the postcondition corresponds

to the expected result condition.
In this paper, each test designed is viewed as a <pre-

condition, postcondition> pair. Coverage with respect to the

input domain is said to be achieved, if the union of the pre-

conditions is the entire input domain of the function under

test. This paper illustrates how automated debugging can be

carried out, if the trace of statements executed, for each test

run, is emitted.

II. PARITIONING AND AUTOMATED DEBUGGING

Some sample test cases where a,b,c > 0 are

 1)precondition: (a eq b) and (b eq c) and (c eq a)

 type = triangleType(a,b,c)

 postcondition: (type eq equilateral)

 2)precondition: (a eq b) and (a ne c) and

 (a+b gt c)

 type = triangleType(a,b,c)

 postcondition: (type eq isosceles)

Consider the function max(a,b) defined as if (a>b)
then max = b else max = a. Below are tests designed

based on the partitioning of the input domain of the

function max.

Test 1:Pre-condition: (a>b). Postcondition: (max equals

a). Test 2:Pre-condition: (a<=b); Postcondition: (max

equals b).

Consider Test 1 and compute actual program states in

the forward direction.

Pre-condition: (a>b)

 If (a>b) then

State: (a>b)

 max = b

 State: (a>b) and (max == b)

 Now computing hypothesized states in the backward

direction, the postcondition (max == a) contradicts with the
corresponding actual state (a>b) and (max == b). The

hypothesized state, just preceding the statement max = b, is

(a==b) which contradicts with the actual state (a>b). From

this it can be concluded that the statement max = b, in the

then branch of the if (a>b) statement, is erroneous or has a

bug. Our method described above towards automated

debugging is similar to the method reported in [3],

however, there is a significant difference in that in [3] , the

postcondition is a union of expected result conditions for

different paths or scenarios. In [3], the postcondition is the

expected result condition of the entire method or function.

The trace of execution for a test corresponds to a unique

single path and it has to be determined which disjunct in the

postcondition in [3] actually corresponds to the trace and

this requires trying out disjunct by disjunct until the relevant

Copyright ISSRE 2009

disjunct in the postcondition is picked up. These overheads

are not present in our method as both the pre-condition and

postcondition are corresponding partitions (of a test) that

result in a unique trace of statements upon execution.

III. ALGORITHM

Automated Debugger Algorithm:

 Step 1: Design tests for a function corresponding to each

 behavioural slice or a partitioned pre-condition,

 postcondition pair.

 Step 2: Run each test designed in step 1 and store, for

 each failed test, the test execution trace in terms

 of the corresponding sequence of statements or

 branches executed.

 Step 3: For a failed test, starting with the corresponding
 partitioned pre-condition, compute actual

 program state at each program point or statement

 in the corresponding trace in the forward

 direction.

 Step 4: For a failed test, starting with the corresponding

 partitioned postcondition, compute backwards

 hypothesized state at each statement in the

 corresponding execution trace. If the actual

 program state does not imply the hypothesized

 program state at a program point, the location of

 a likely erroneous statement is detected as in [3].

 For a trace S1, S2, …,Sn generated by the execution of

the test <pre-condition, postcondition>, automated

debugging may be carried out as shown below, if the test

fails.

 <pre-condition>

 S1

 [actual program state,

 hypothesized program state]

 S2

 [actual program state,

 hypothesized program state]

 …

 Si Evidence as

 actual program state

 and hypothesized state

 contradict each other;

 likely location of the
 error at Sj, where j<=i.

 …

 S(n-1)
 [actual program state,

 hypothesized program state]

 Sn

 <postcondition>

Concrete execution:

An instance of each <pre-condition, postcondition> pair

may be created by assigning suitable values to variables or

parameters and the function invoked with actual parameter

values and the trace of statements executed is recorded.

Actual program states and hypothesized program states are

computed and remembered at each program point. The

statement where a contradiction is encountered leads to an

evidence or a clue about the possible location of the

errorneous statement.

Symbolic execution:

Actual states can be computed in the forward direction

based on symbolic execution as well. Hypothesized states

can be computed backward starting from the postcondition.

The statement where a contradiction is found between the

actual state and hypothesized state leads to evidence. If
symbolic execution is employed , the path in the function

that corresponds to a test needs to be identified.

IV. CONCLUSIONS

This paper described a systematic basis for unit testing

wherein each test case is represented by a <pre-condition,

postcondition > pair. Each pre-condition is a partition of the

input domain of the function or component under test. The

union of all the pre-conditions (of the tests) must be the
input domain of the function under test , if test coverage

needs to be achieved. The paper also described a technique

which is the basis for automated debugging for failed tests.

The examples discussed in the paper deal with numeric

variables , however, the methodology is equally applicable

for variables of any data type as the key is to view each test

as a <pre-condition, postcondition> pair.

REFERENCES

[1] http://www.nunit.org

[2] http://www.junit.org

[3] Haifeng He, Neelam Gupta,: “Automated Debugging Using Path-
Based Weakest Preconditions,” FASE 2004: pp 267-280.

http://www.nunit.org/
http://www.junit.org/

