
© The Aerospace Corporation 2009

Application of the Architectural
Analysis and Design Language
(AADL) for Quantitative System
Reliability and Availability Modeling

Myron Hecht, Alex Lam, and Chris Vogl

Presented to
International Symposium on Software Reliabiltiy Engineering

Mysuru, India
November, 2009

Copyright ISSRE 2009

2

Outline

• Motivation
• Introducing AADL
• AADL Error Annex
• AADL Modeling Environment
• AADL transformation tool
• Sample Application
• Future Plans

3

Motivation

• Need: Support to make better decisions on system architectures
• Target systems: Space vehicle and other constrained computing

environments
• Development phase: Architectural decisions made during the early

design impact
• Decisions supported:

– Extent and type of redundancy
– Tradeoffs of reliability vs. Weight, power, and functional capability
– Failure rate and recovery time requirements
– Strategies for recovering from control and payload computing disruptions
– Handling failure propagation and common mode failures

4

Introducing the Architecture Analysis
& Design Language (AADL)

• Society of Automotive Engineers (SAE) Aerospace Standard AS5506
(2004)

– Preceded by more than a decade of development under the DARPA Meta-
H program

• Includes representations of software, computational hardware, and
system components for

– specifying and analyzing real-time embedded systems,
– mapping of software onto computational hardware elements.

• Effective for model-based analysis and specification
– Evolved from DARPA Meta H project
– Highly structured, defined semantics allows for modeling and analysis

• Annex libraries define extensions to the core language concepts and
syntax

– Error Annex of particular interest

5

AADL/UML/SysML Relationship

UML 2.0

MARTE
Performance

AADL

Error Annex
AADL

UML Profile

Software and
System Engineering

Behavioral
Annex

SysML

SysML
UML Profile

UML 2.0

MARTE
Performance

AADL

Error Annex
AADL

UML Profile

Software and
System Engineering

Behavioral
Annex

SysML

SysML
UML Profile

6

AADL Components (graphical representation)

– text and xml representations also defined

7

AADL Hardware/Software Architecture Representation

Bus Control
Software

data

PCPPCP

Vehicle Network

BCP

Inter-BCP Bus

BCP

Inter-PCP Bus

Payload Control
Software

data

Bus Control
Software

data

8

AADL Major Features

• Provides a standardized textual and graphical notation for describing
software and hardware system architectures and their functional
interfaces

• Components have interactions, flows, and subcomponents
• Component interactions: Consists of directional flow through

– data ports for unqueued state data
– event data ports for queued message data
– event ports for asynchronous events
– synchronous subprogram calls
– explicit access to data components

• Different system configurations and topologies can be represented
using the AADL mode concept

9

AADL Error Annex

• AADL annex that supports reliability analysis
• Defines error model

– State transition diagram that represents normal and failed states
– Error models can be associated with hardware components, software

components, connections, and “system” (composite) components
• Error model consists of

– State definitions
– Propagations from and to other components
– Probability distribution and parameter definitions
– Allowed state transitions and probabilities

10

AADL Error Model Example

error model example
features
ErrorFree: initial error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
Repair: error event {Occurrence => poisson mu};
Failvisible: in out error propagation {Occurrence => fixed p};
end example;
error model implementation example.general
transitions
ErrorFree-[Fail]->Failed;
Failed-[Repair]->ErrorFree;
ErrorFree-[in Failvisible]->Failed;
Failed-[out Failvisible]->Failed;
end example.general;

More information: Feiler (2007)

ErrorFree

Failed

Fail
(lambda)

Repair
(mu)

Failvisible (in)
Failvisible

(out), prob p

11

AADL Modeling Environment

TopCASED
Graphical

Editor

OSATE modeling
environment

(meta- model, text
editor, parser)

Eclipse Graphical
Editing

Framework (GEF)

Eclipse Graphical
Modeling

Framework
(GMF)

Eclipe Modeling Framework (EMF)
Technology (EMFT)

(Object Constraint Language (OCL), Query,
Transaction, and Validation features,

EMF
Service Data Objects (SDO),

XML Schema Definition
(XSD) Infoset Model)

AADL
File

Eclipse Interactive Development Environment

Eclipse Modeling Tools

Error
Models

12

AADL transformation

• ADAPT Tool (Ana Rugina, LAAS-CNRS)
– Packaged as an eclipse plug-in
– Takes in AADL architecture and error behavior

information
– Converts to a general stochastic petri net
– Outputs GSPN information to an XML file

• ADAPT-MOBIUS Converter
– Takes in the ADAPT XML file.
– Converts a GSPN to a Mobius Stochastic

Activity Network
– Outputs SAN information to an XML format.

13

Open Source AADL Tool Environment (OSATE)

• Based on Eclipse Release 3
• Parsing & semantic checking of approved AADL
• AADL (Text) to AAXL (XML) and back
• Syntax-sensitive text editor
• Syntax-Sensitive AADL Object Editor
• AADL property viewer
• AADL to MetaH translator
• Online help
• Graphical layout editor
• Multi-file XML support
• First analysis plug-ins

More information: www.osate.org

14

MOBIUS Modeling Tool

• Developed by the University of Illinois at Urbana Champaign
• System-level performance and dependability modeling
• Based on stochastic analysis network representation

More information: www.mobius.uiuc.edu

15

More on Stochastic Activity Networks

– Can handle recoverable redundant
systems with multiple states

– Adaptation of Petri Nets
– Evaluated using Mobius Software

• Developed by University of Illinois at
Urbana-Champaign

– Advantages:
• Simulation-based solution; does not

require assumption of exponential
distribution

• Allows for higher fidelity modeling of
spacecraft recovery models

– Possible alternatives:
• Stochastic Petri Nets
• Markov models

Input Gate Place Output
Gate

Activity

16

TOPCASED Graphical Editor

• Open-Source “Meta-modeling” toolset
– A model type or a language can be described using a meta model or a

meta language
– The Open Modeling Group (OMG) defined a 4-layer model

• M3-Meta modeling language (ECORE – modification of MOF used by
TOPCASED)

• M2-Meta-model (schemas, AADL definition)
• M1 – Model (AADL, finite state machine)
• M0 – Real Object

– AADL representation in ECORE
– TOPCASED can graphically represent ECORE

More information: www.topcased.org

17

Example: Low Earth Orbit Space System
(LSS)

• Description of System
– The system contains one Bus Control Unit (BCU) and on Payload Control

Unit (PCU).
– Each Control Unit contains two Control Channels comprised of one piece

of Control Software (BCS, PCS) and one Control Processor (BCP, PCP).
– The BCU is in hot backup with imperfect switching assumed.
– The PCU is in cold backup with perfect switching assumed (thus it is

modeled as having only one Control Channel).
– The Payload relies on the Bus, thus whenever the Bus is in Standby, the

Payload goes to Standby.

18

System Representation (1/2)
Static Architecture

BCP
Primary
channel
BCS SI

BCP
Standby
(Backup)
channel
BCS SI

Spacecraft Bus

PCU

PCP
Primary
channel
PCS SI

PCP
Standby
(Backup)
channel
PCS SI

Spacecraft Payload

BCU

19

AADL Type Representations (using TOPCASED)

20

AADL Architecture Representations (using TOPCASED)

S
(next hierarchical level)

21

AADL Representation (using TOPCASED, continued)

(both Primary and Backup)

22

Error Model Editor

23

Error Model Implementation for BCU Backup Processor

error model implementation BCS.impl
transitions
Active -[Failing]-> ReportDown;
Active -[in Sleep]-> Standby;
ReportDown -[out BCSFail]-> Down;
Active -[in Terminate]-> Terminated;
Down -[Fail_case_Minor]-> DownMinor;
Down -[Fail_case_Major]-> DownMajor;
DownMinor -[MinorRepair]-> ReportStandby;
DownMajor -[MajorRepair]-> ReportStandby;
ReportStandby -[out BCSStandby]-> Standby;
Standby -[in Wake]-> Active;
Standby -[in SwitchFail]-> Down;
Standby -[in Terminate]-> Terminated;
Active -[in CPUFail]-> ReportTerminated;
ReportTerminated -[out BCSTerminate]->

Terminated;
end BCS.impl;

24

Stochastic Analysis Representation
(product of ADAPT-M conversion)

25

LSS – Results of MoBIUS processing

Performance Variable Simulated Mean Value
Mission Duration 95038 hours

Space Vehicle Online Time 67291 hours
Payload Online Time 67291 hours
Payload Down Time 26026 hours

Bus Online Time 71069 hours

26

Future Plans

• TOPCASED robustness improvements
• Addition of automated FMEA
• Application to more systems

27

Conclusions

• A tool set using a common language between system engineering and
dependability engineering fori Space Systems

– Can enable better decision support
– Enables tradeoffs and analyses during the early design phases, but can

be used during other phases
• AADL currently offers the best semantics

– Failure rate and failure mode definition
– Inclusion of probability distributions
– but progress is being made in other OMG-sponsored efforts

• Tool set is based on public domain software
– Enables cooperative development
– Less dependence on commercial vendor viability – challenging in a

dynamic and small market place
– Tradeoff: configuration control and more owner responsibility for

maintenance and debugging

28

Acronyms
ADAPT: AADL Architectural models to stochastic Petri nets through model Transformation,
AADL: Architecture Analysis & Design Language
BCP: Bus Control Processor
BCS: Bus Control Software
BCU: Bus Control Unit
EMF: Eclipse Modeling Framework (part of Eclipse)
GEF: Graphical Editing Framework (part of Eclipse)
GMF: Graphical Modeling Framework (part of Eclipse)
GSPN: Generalized Stochastic Petri Net

LSS: Low Orbit Space System
MOBIUS: Model-Based Environment for Validation of System Reliability, Availability, Security, and
Performance

OSATE: Open Source AADL Tool Environment (Software tool integrated into Eclipse)

PCP: Payload Control Processor

PCS: Payload Control Software

PCU: Payload Control Unit

SAN: Stochastic Analysis Network

TOPCASED: Toolkit In OPen source for Critical Applications & SystEms Development

29

References

• Society of Automotive Engineers (SAE) Aerospace Standard AS5506
(2004)

• A. Rugina, K. Kanoun, M Kaaniche, “The ADAPT Tool: From AADL
Architectural Models to Stochastic Petri Nets through Model
Transformation,” 7th European Dependable Computing Conference
(EDCC), Kaunas : Lituanie (2008)

• Peter Feiler and Anna Rugina, Dependability Modeling with the
Architecture Analysis & Design Language (AADL), Software
Engineering Institute report CMU/SEI-2007-TN-043, July 2007,
available from www.sei.cmu.edu

• D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster, “The Mobius framework
and its implementation,” IEEE Trans. on Soft. Eng., vol. 28, no. 10, pp.
956–969, October 2002.

http://www.sei.cmu.edu/�

	Application of the Architectural Analysis and Design Language (AADL) for Quantitative System Reliability and Availability Modeling
	Outline
	Motivation
	Introducing the Architecture Analysis �& Design Language (AADL)
	AADL/UML/SysML Relationship
	AADL Components (graphical representation)
	AADL Hardware/Software Architecture Representation
	AADL Major Features
	AADL Error Annex
	AADL Error Model Example
	AADL Modeling Environment
	AADL transformation
	Open Source AADL Tool Environment (OSATE)
	MOBIUS Modeling Tool
	More on Stochastic Activity Networks
	TOPCASED Graphical Editor
	Example: Low Earth Orbit Space System (LSS)
	System Representation (1/2) �Static Architecture
	AADL Type Representations (using TOPCASED)
	AADL Architecture Representations (using TOPCASED)
	AADL Representation (using TOPCASED, continued)
	Error Model Editor
	Error Model Implementation for BCU Backup Processor
	Stochastic Analysis Representation �(product of ADAPT-M conversion)
	LSS – Results of MoBIUS processing
	Future Plans
	Conclusions
	Acronyms
	References

