
Micro Process Adherence for Delivering Reliable Software

Vibhu Saujanya Sharma and Vikrant Kaulgud
Accenture Technology Labs, Bangalore, KN, India.
{vibhu.sharma, vikrant.kaulgud}@accenture.com

Abstract—With quality and timely delivery of software
becoming ever more vital, ensuring that development processes
for building high quality code are adhered to has become
important. However the problem project managers face is
in verifying if developers are actually adhering to the rec-
ommended processes pertaining to activities they perform at
their workstations, which can be termed as micro processes.
This lack of insight often leads to developers bypassing the
development micro processes thereby reducing the quality and
reliability of the checked-in code. We present an approach to
provide enhanced visibility to the project manager based on
capturing the occurrence of relevant activities performed in
the developer IDEs and related tools and then analysing the
set of events to identify the deviation of the pattern of these set
of events from a defined model of micro-processes. We discuss
our current prototype implementation and the benefits that we
foresee from this work.

I. INTRODUCTION

Software delivery projects use fine-grained processes or
micro processes standardizing code reviews, unit testing,
code check-in best practices, etc. Definition, deployment and
adherence of development micro-processes decide the qual-
ity and reliability of software delivery artefacts. Fine-grained
activities captured in a micro-process are not amenable for
manual reporting, since the sheer number of these activities
make manual reporting very time consuming. Today, there
is inadequate support for project managers to define such
micro processes and automatically check their adherence.

To illustrate the problem, we take an exemplary micro pro-
cess - “Developer should run a (project-mandated) quality
tool and resolve all Severity-1 issues before code check-in”.
In a crunch situation, non-adherence of this micro process
would result in checked-in code of inferior quality and code
review might not happen in a stringent manner. Thus, defects
will slip through into production code thereby increasing the
failure rate. Since the developer is running the quality tool as
part of his development work, he cannot possibly submit a
tool report for every tool run. In absence of such reports, how
then can the project manager be assured of micro process
adherence and be sure of project outcomes?

Here, we briefly introduce the Micro Process Adherence
System (MPAS). MPAS allows definition of micro pro-
cesses spanning multiple development activities and multiple
development tools. MPAS aims to provide a mechanism
for monitoring micro adherence and for correlating it with
project metrics as well as providing developer guidance.

II. MONITORING MICRO PROCESS ADHERENCE

MPAS uses a DSL based approach for micro process
definition. MPAS DSL uses ‘parameterized activity phrases’
such as “Run <Tool>” wherein the project manager instan-
tiates the phrase through selecting an actual and supported
development tool. For example, in the above exemplary
micro process, the instantiated phrase could be “Run PMD”,
where PMD [1] is well-known Java code quality tool. MPAS
DSL supports activity phrases related to typical development
activities of code quality assessment, unit testing, code
editing, code check-in and manual work activities like code
reviews. Furthermore, the MPAS DSL uses temporal se-
quencing phrases such as “Before” and logical connectivity
phrases such as “And” for weaving together the parameter-
ized activity phrases into a micro process definition.

The deployment of a micro process is done using a
state-machine. Since the development activities are discrete
events, it is intuitive to view a micro process definition
as a state-machine. Typical state-machine analytics provide
statistics on micro process execution and permit check-
ing of temporal sequencing constraints and state omission
constraints. It is possible to focus on two kinds of mi-
cro processes: developer-centric and environment-centric. In
developer-centric micro processes, only developer telemetry
is used. For this a state machine approach provides a
lightweight deployment model wherein MPAS is installed on
each developer’s machine providing real-time feedback and
guidance to the developer. For environment-centric micro
processes such as those using work-item trackers, MPAS is
installed centrally. So a state machine approach is applicable
for both distributed as well as centralized adherence checks.
Finally, state machines are good for micro process discovery
as well.

For automated adherence monitoring, event data is col-
lected in a non-invasive and automatic manner from de-
veloper workstation. A similar approach has been used in
Hackystat project [2]. As shown in figure 1, the Micro
Process Observer co-ordinates this event collection from the
development environment into a central event repository.
Further, using event signatures from the Event Character-
istics database, raw event data is filtered to obtain only rel-
evant information. This filtered event data is analyzed using
state-machines for micro-process adherence. Subsequently,
reports are generated indicating micro process adherence

Copyright ISSRE 2009



levels.

Configure 
micro process 

rules

Execute micro 
process rules

Store execution 
results Reporting

Developer 
Workstation

Version control 
systems Tool logs Management 

repository/ tools

Process micro 
process logs to 

extract meaningful 
information

Query-able 
micro process 

information

Event 
characteristics 

database

Micro process 
rules

Micro 
Process 

Execution 
Observer

Figure 1. Monitoring Micro Process Adherence

III. MANAGING COMPLEX MICRO PROCESSES

A key aspect of MPA system is the ability to define a
conglomeration of activity phrases to create a complex micro
process. For example, to achieve the objective of increasing
unit testing effectiveness, developers need to write unit tests
before a corresponding class is written and they need to run
unit tests frequently. This requires a conglomeration of two
activity phrases: (i) Unit test-case class has to be created be-
fore the corresponding Java Class is created, and (ii) Unit test
should be run <frequently> between Java Class edits. With
conglomeration, each activity phrase is monitored separately
and a combined report is generated. Project manager weights
each constituent activity phrase to get a combined score
indicating some degree of impact on the stated objective.
With this, project managers can continually evolve the
complexity of micro process definitions and achieve higher
degree of visibility into project dynamics and higher control
on project outcomes. Note that conglomeration of activity
phrases supports partial adherence levels too.

IV. DISCUSSION AND CONCLUSION

MPAS allows a project manager to monitor adherence
to recommended development micro processes resulting
in ensuring high fidelity adoption of development micro
processes, thereby improving project quality and reliability.
This in turn reduces rework, cost as well as reducing
schedule variance. From another viewpoint, it allows project
managers to quickly identify weak processes and use training
/ incentives to improve process adherence.

Currently we are engaged in implementing the prototype
for MPAS as well as collaborating internally with various

project groups to refine and align this effort to be most effec-
tive for projects in our organization. This includes collecting,
prioritizing and implementing various micro processes that
are followed explicitly, or sometimes implicitly, in various
projects. Further, we are tracking correlation between micro
process adherence levels and project outcomes. This tracking
is critical for continuous improvement plans that many
projects adopt for improving project efficiency.

Approaches similar to MPAS have been reported in
[2] and [3]. While MPAS uses similar principles, it is
more focused on modeling and monitoring complex micro
processes, real-time feedback and guidance to developers,
integration of manual work activities and supporting new
tools and repositories like SharePoint.

From the response we have thus far received, MPAS
encourages better adherence to recommended micro pro-
cesses, thus helping them deliver reliable higher quality
development artefacts within the stipulated cost and effort.

REFERENCES

[1] “Pmd,” http://pmd.sourceforge.net/.

[2] H. Kou, “Ics2005-07-01: Studying micro-processes in software
development stream,” Technical Report: Department of Infor-
mation and Computer Sciences, University of Hawaii.

[3] F. Schlesinger and S. Jekutsch, “Electrocodeogram: An
environment for studying programming,” https://www.mi.fu-
berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf.


