
Software Fault Injection - Industry 

Experience  

Lakshmankumar Mukkavilli
Cisco Systems, Inc. 

Copyright ISSRE 2009



Topics

• Acronyms
• Background
• Goal
• Tool for Software Fault Injection
• Usage – In Regression Testing
• Results
• Usage – In Unit Testing
• Results
• Conclusions



Acronyms

• SA – Static Analysis
• MIF – Middleware for Injection of Faults (an internal 

tool)
• CUT – Component Under Test
• CFD – Customer Found Defect
• MBT – Model Based Testing
• UT – Unit Testing
• ROI – Return on Investment



Background

• Very large embedded software
• About 10-30% of the code is error handling code
• Typically this code is not touched by tests
• Developed a tool called MIF (Middleware for 

Injection of Faults)



Background (Continued)

• We have a large repository of functionality tests that 
are used in regression testing. These tests cover non-
error handling code.

• All these tests are executed using our test 
automation system under different configurations

• All the code has gone through SA. SA detects 
instances where return values are ignored. Users are 
forced to write error handling code.



Goal

To ensure that all the error handling code is touched. 



Tool for Software Fault 
Injection

• An internal tool (MIF) is used for software fault 
injection. Very easy to use.

• It is integrated into our test automation system. 
Execution, logging and analysis are automated.

• Capable  of 
– Interception of function calls and return error conditions.  

This is the focus in regression testing.
– Replace functions
– Various policies for fault injection activity are supported
– Simulation of exceptions, delays

• Users specify  the components  and functions of 
interest. Tool does the rest of work.



MIF



Usage

Two modes of use
• Regression Testing 
• Unit Testing 



Testing using MIF

                       malloc()

CUT -Component 

Under Test

API1

API2

API3

               open()

                          getbuffer()

M
IF

In
te

rc
e

p
t 
a

n
d

 i
n

je
c
t 
fa

u
lt
s

Incoming Interfaces

Tests invoke these 

calls 

Outgoing Interfaces

Intercepted and faults 

injected by MIF

Faults injected on outgoing 

interfaces



Fault Injection in Regression 
Testing

• Faults are injected on all the calls to the standard 
functions.

• Existing tests are used
• Mainly look for crashes/hangs



Results

• For first three years - 4% of the regression 
resources  were used. They found 25% of the 
defects.

• Many of defects were related to CFD’s
• Almost in all instances the error handling code was 

being executed for the first time in our testing.
• The tool provides good information to facilitate 

reproduction of the defect. The problems were 
quickly resolved.



Fault Injection in Unit Testing

• Faults are injected on the services used by the unit. 
• Sometimes  faults are injected on intra-unit calls
• MIF is integrated into our unit testing tool.
• Very popular with development engineers. 

• Incoming interfaces are called in three ways
– Fully automated - Function calls are generated by the API robustness test 

generator. This is the asic robustness testing of a component
– Semi-automatic – API dependencies are modeled using our lightweight MBT. 

API’s are invoked based on the test sequences generated from the models.
– Manual – Users create the tests where various functions/API’s are called. 

• See the companion paper on “Introduction of 
Developer Testing in an Embedded Environment”



Robustness Testing using MIF

                       malloc()

CUT -Component 

Under Test

API1

API2

API3

               open()

                          getbuffer()

M
IF

In
te

rc
e

p
t 
a

n
d

 i
n

je
c
t 
fa

u
lt
s

Incoming Interfaces

API  test generator 

invokes these calls 

Outgoing Interfaces

Intercepted and faults 

injected by MIF

Faults injected on outgoing 

interfaces



Results

• Please see the companion paper on “Introduction of 
Developer Testing in an Embedded Environment”

• Defects found using MIF constitute a significant % 
of the defects found in UT.

• Development engineers are very creative and varied in 
using the tool. 

• Fewer development escapes.



Conclusions

• A good tool for fault injection is the key to success
– Important factors are – Ease of use, Support for automation, 

support for a variety of fault injection techniques, good 
examples and training materials

• Software fault injection is a valuable bug finding 
technique.

• Very good ROI
• Now Software Fault Injection is a mainstream testing 

technique.


