
Introduction of Developer Testing

in an Embedded Environment

Lakshmankumar Mukkavilli
Cisco Systems, Inc.

Copyright ISSRE 2009

Topics

• Acronyms
• What is Developer Testing
• Organization
• Background
• Action
• Tool for UT
• Pilots
• Criteria for the Pilots
• Results
• Key Factors for Success
• Status

Acronyms

• DT – Developer Testing
• UT – Unit Testing (used interchangeably with

developer testing)
• MBT – Model Based Testing
• CFD – Customer Found Defect
• ROI – Return on Investment

What is Developer Testing

Creation of whitebox tests by the development
engineers with a view to a reduction in the defects
found post-development.

Organization

• 100’s of development and test engineers
• Very large embedded software
• Major revenue generator
• Development spread over multiple Business Units
• Testers perform blackbox testing and create test

scripts. Typically testers start testing a feature
after handoff from development.

Background

• Root cause analysis of the CFD ’s indicated that a
significant % of the defects were UT escapes.

• Significant % of defects found by the test teams
should have been caught during developer testing.

• Since test teams spend good part of their effort on
basic bugs, they did not have much time for other
defects.

• Developer testing involved basic blackbox testing.

Background (Continued)

• No serious whitebox testing
• Big holes in the coverage that could not be filled by

just blackbox testing.

Action

• Managers and senior engineers from development,
tools and process groups got together and created a
set of guidelines for the developers. Mandated Static
Analysis (SA), Reviews and UT .

• UT guidelines included a set whitebox testing
techniques applicable to our software.

• SA and reviews were adopted. UT adoption was close
to zero.

Causes for Lack of Adoption

• Slow builds. Whitebox tests require several builds.
• No budgeted time for UT
• Notion of rigorous whitebox testing was novel. There

were hardly any examples to emulate.
• No standard tool
• No evidence of value of UT
• Feeling that testing was the job of the testers

Tool for UT

• Several external tools were evaluated and were found
to be inadequate for our needs. One of them was
subjected to trials by various development engineers.
Feedback was not positive.

• We developed a tool internally to meet the needs of
our developers to cover various testing strategies
indentified in the guidelines for UT. Some of the
salient features are
– Innovative technique to dramatically reduce build times
– Support for lightweight MBT
– Software Fault Injection
– Support for automation

Tool for UT(Continued)

– Robustness test generation
• Test generator is included in the executable. Contrast this with the

tools where a test is generated on the host and shipped to the target.

– Test/subtests organization
– Low memory footprint
– Support for scalability testing
– Profiling/Tracing
– Code coverage
– Memory leak detection
– Library of functions
– Features to help test code modularity and reuse

Tool for UT(Continued)

• Quality of the tool is an important. Aim is zero CFD’s.
• Close liason with the development groups.
• Goal of the tool is to get minimal input from the users

and provide maximum functionality.
• Created training materials
• Built a large collection of working examples to cover

various test strategies.
• High quality of support. In many cases the initial

tests were created by the tool team.

Pilots

• Two sets of candidates for pilots.
– First set of candidates was interested in evaluation and

possible adoption of UT .
– The second set of candidates came from a major code

refactoring effort. Worked jointly with this team to make
whitebox testing by development engineers a standard
practice.

• Provided training in
• Using the tool effectively.
• Various techniques for whitebox testing

• In almost all cases development engineers were
writing whitebox tests for the first time.

Criteria for the Pilots

• Reducing development escapes.
• Precision/reproducibility of the problem reports

created.
• Time to resolve the problem reports.
• Cost of finding the defects. Norm for the test

groups is three weeks/defect.

Results(Continued)
Project Weeks Defe

cts

Comments

Project

1

40 125 Software fault injection was a

key contributor.

The feature is released and

there are no

high/medium severity bugs

against the feature.

Project

2

6 59 51 from Light-weight MBT and

8 from API Robustness testing

Project

3

8 18 6 from API Robustness, 4 from

concurrency testing

Results(Continued)
Project Weeks Defe

cts

Comments

Project

4

3 9

Project

5

4 10 4 from CLI Robustness, 4 from

light-weight MBT

Project

6

10 47 12 from software fault injection

Key Factors for Success

• The tool
– Integrated into developers workflow
– Feature richness
– Quality and reliability
– Support for rapid incremental builds

• Buy in from the management of the development
engineering

• Hands-on workshops
• Very high ROI

Status

• Developer Testing is considered valuable
• Steady growth in adoption
• Effort for UT is included in the schedules
• Tool is being enhanced

– Automation (whitebox test regression runs)
– Newer test strategies

• Some test teams are trying to take advantage of the
whitebox tests created by the developers. Early
results indicate a positive synergy.

• With the loss of easy defects, test groups are trying
to explore newer techniques for defect finding.

Status(Continued)

• Advanced the state of testing. Some techniques like
lightweight MBT, Software fault injection,
robustness testing have become widely used.

