Introduction of Developer Testing
In an Embedded Environment

Lakshmankumar Mukkavilli
Cisco Systems, Inc.

Copyright ISSRE 2009



Topics

- Acronyms
* What is Developer Testing
 Organization

- Background

- Action

+ Tool for UT

- Pilots

* Criteria for the Pilots
+ Results

Key Factors for Success

- Status



Acronyms

+ DT - Developer Testing

* UT - Unit Testing (used interchangeably with
developer testing)

* MBT - Model Based Testing
- CFD - Customer Found Defect
« ROI - Return on Investment



What is Developer Testing

Creation of whitebox tests by the development
engineers with a view to a reduction in the defects
found post-development.



Organization

»+ 100's of development and test engineers
» Very large embedded software

* Major revenue generator

* Development spread over multiple Business Units

+ Testers perform blackbox testing and create test
scripts. Typically testers start testing a feature
after handoff from development.



Background

* Root cause analysis of the CFD 's indicated that a
significant % of the defects were UT escapes.

+ Significant 7% of defects found by the test teams
should have been caught during developer testing.

+ Since test teams spend good part of their effort on
basic bugs, they did not have much time for other
defects.

- Developer testing involved basic blackbox testing.



Background (Continued)

* No serious whitebox testing

* Big holes in the coverage that could not be filled by
just blackbox testing.



Action

* Managers and senior engineers from development,
tools and process groups got together and created a
set of guidelines for the developers. Mandated Static
Analysis (SA), Reviews and UT .

»+ UT quidelines included a set whitebox testing
techniques applicable to our software.

+ SA and reviews were adopted. UT adoption was close
To zero.



Causes for Lack of Adoption

» Slow builds. Whitebox tests require several builds.
* No budgeted time for UT

» Notion of rigorous whitebox testing was novel. There
were hardly any examples to emulate.

- No standard tool
- No evidence of value of UT

* Feeling that testing was the job of the testers



Tool for UT

Several external tools were evaluated and were found
to be inadequate for our needs. One of them was
subjected to trials by various development engineers.
Feedback was not positive.

We developed a tool internally to meet the needs of
our developers to cover various testing strategies
indentified in the guidelines for UT. Some of the
salient features are

- Innovative technique to dramatically reduce build times

- Support for lightweight MBT

- Software Fault Injection

- Support for automation



Tool for UT(Continued)

Robustness test generation

* Test generator is included in the executable. Contrast this with the
tools where a test is generated on the host and shipped to the target.

Test/subtests organization

Low memory footprint

Support for scalability testing

Profiling/ Tracing

Code coverage

Memory leak detection

Library of functions

Features to help test code modularity and reuse



Tool for UT(Continued)

* Quality of the tool is an important. Aim is zero CFD's.
* Close liason with the development groups.

* Goal of the tool is to get minimal input from the users
and provide maximum functionality.

* Created training materials

Built a large collection of working examples to cover
various test strategies.

High quality of support. In many cases the initial
tests were created by the tool team.



Pilots

*+ Two sets of candidates for pilots.

- First set of candidates was interested in evaluation and
possible adoption of UT .

- The second set of candidates came from a major code
refactoring effort. Worked jointly with this team to make
whitebox testing by development engineers a standard
practice.

* Provided training in

- Using the tool effectively.
- Various techniques for whitebox testing

* Inalmost all cases development engineers were
writing whitebox tests for the first time.



Criteria for the Pilots

» Reducing development escapes.

* Precision/reproducibility of the problem reports
created.

» Time to resolve the problem reports.

* Cost of finding the defects. Norm for the test
groups is three weeks/defect.



Results(Continued)

Project
1

Project
2

Project
3

40

6

125

59

18

Software fault injection was a
key contributor.

The feature is released and
there are no

high/medium severity bugs
against the feature.

51 from Light-weight MBT and
8 from API Robustness testing

6 from APl Robustness, 4 from
concurrency testing



Results(Continued)

Project 3 9

4

Project 4 10 4 from CLI Robustness, 4 from
5 light-weight MBT

Project 10 47 12 from software fault injection

6



Key Factors for Success

- The tool

- Integrated into developers workflow

- Feature richness

- Quality and reliability

- Support for rapid incremental builds

* Buy in from the management of the development
engineering

» Hands-on workshops

- Very high ROI



Status

Developer Testing is considered valuable

Steady growth in adoption
Effort for UT is included in the schedules

* Tool is being enhanced
- Automation (whitebox test regression runs)
- Newer test strategies

Some test teams are trying to take advantage of the
whitebox tests created by the developers. Early
results indicate a positive synergy.

With the loss of easy defects, test groups are trying
to explore newer techniques for defect finding.



Status(Continued)

» Advanced the state of testing. Some techniques like

lightweight MBT, Software fault injection,
robustness testing have become widely used.



