
Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

1

Design of safety critical systems with ASCET

Copyright ISSRE 2009

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

2

Safety critical systems with ASCET: Agenda

• Limitations of C

• Model based design – Overview and Advantages

• Introduction to ASCET

• ASCET models vs. UML

• ASCET models vs. Ada

• Fixed point arithmetic

• Exceptions

• Challenges associated with Model Based Design approach

• Validating the code generator

• Summary

• References

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

3

Safety critical systems with ASCET
Limitations of C language

• Behavior depending on the bit size of the int type: u32A = u16A +
u16B will produce different results for 16 and 32 targets

• Weakly defined order of evaluation: in u32A = getX() + getY() either
function call may be executed first

• Implicit loss of sign due to integer conversion: u32 < s32 will convert
s32 to unsigned long

• Counter-intuitive precedence rules: a + b << 1 first computes the
sum that is then shifted by 1, instead of treating the shift like a
multiplication.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

4

Safety critical systems with ASCET
Model Based Design - Overview

• The development starts from making mathematical models. These models can
be used for...

• Validation of the algorithms through PC simulation

• Simulation in real time target

• Generate automatic code

• Why this approach ?

• Gaps due to technical representation and understanding..

• There exists a huge gap between the function developer and software engineer who
implements the algorithm. Paper specifications are not used. Models are developed by
control function developers and given as an executable specification.

• Need for reducing the development time.

• Time to market is a very important in today’s scenario and this is very well achieved by
autocoding.

• Avoid human errors

• Human errors are avoided in coding due to autocode. Unlike human errors, the errors
injected by code generator are systematic and not random. Systematic errors can be
removed systematically.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

5

Safety critical systems with ASCET
Further advantages of Model Based Design

• Early validation of concepts through simulation and rapid prototyping gives
enough room for development of many new algorithms. This is very useful for
function developers (This is explained in detail in the next slide)

• Standard compliance
• Code generators are generally designed to meet the standards which are specific to

an industry. e.g. MISRA-C:2004 compliant autocode is generated for automotive
use case. (Motor Industry Standard Reliability Association – MISRA has given set of
rules for using C language for automotive application) http://www.misra.org.uk/

• Traceability is very important for the software with respect to the functional
requirements.
• Traceability with model is easier compared to the code

• Documentation
• Model based design tools come with automatic documentation generation facilities.

The documentation is most of the time self explanatory. Ambiguities are resolved
due to executable specification.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

6

Safety critical systems with ASCET
Early validation techniques supported by Model Based Design

• Function models can be validated during early phases of development through
simulation. Following are the methods which are generally used for validating
the function models.
• Model in the Loop simulation (MiL)

• Validation of control functions through simulation of floating point models

• Software in the Loop simulation (SiL)
• Validation of production quality C code (ECU specific code) through simulation

• Rapid prototyping
• Validating the models in a real time execution target.

• Need for early validation
• Errors in software algorithm and implementation errors can be easily identified

during the early phases of development. Hence probability of identifying the bugs at
a later point in time is significantly reduced resulting in a better quality.

• The cost for fixing a detected problem increases by the factor 10 for each process
step it doesn’t get detected.

• 60% of automotive electronic systems development cost is contributed by the
software development.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

7

Safety critical systems with ASCET
Introduction to ASCET

/* public Iberechnung [] */
void IUMRECHNUNG_IMPL_Iberechnung(void)
{
sint32 _t1sint32;
/* Iberechnung: sequence call #1 */
_t1sint32 = ((uint32)(IUMRECHNUNG_IMPLinstance->A->val * 125) >> 7) /

IUMRECHNUNG_IMPLinstance->B->val;
/* assignment to C: min=0, max=65535, hex=4phys+0, limit=(maxBitLength:

true, assign: true), zero incl.=true */
IUMRECHNUNG_IMPLinstance->C->val =

(_t1sint32 <= 15) ? ((uint32)_t1sint32 << 12) : 65535;
}

Specify the model:
domain specific
language for the
automotive industry

Generate code

Run code in
simulation on a PC
or deploy on
embedded
controller

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

8

Safety critical systems with ASCET
Different types of Models

Block diagram
(Data flow, control flow,
OO-modeling, hierarchies)

Boolean table

State machine
diagram

ESDL model description
with syntax highlighting

C code description
syntax highlight

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

9

Safety critical systems with ASCET
Fixed point arithmetic

Embedded control units are resource constrained:

Floating point arithmetic is expensive => Fixed point arithmetic is used

The model contains the specification of the variables:

Value range, Precision and Data type

Calculation is specified on the physical model:

c = a + b;

The code generator take care of the implementation details

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

10

Safety critical systems with ASCET
ASCET vs. UML

UML is primarily a design notation:

• Many different diagrams on various levels of abstraction

• Language independent

• Does not contain executable behaviour

ASCET models:

• Fewer diagrammatic styles, and no higher-level abstractions like
package or deployment diagrams

• Have both intrinsic value and added value in combination with code
generation

• Are executable on multiple different platforms

• From a 64-bit PC to a 16-bit microcontroller

• Natively supports the C programming language

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

11

Safety critical systems with ASCET
ASCET vs. Ada: Fixed point types

Ada has a strong type system

This extends to fixed-point, requiring different types for values of
different precision.

Precision/intervals are specified, data type is chosen by the compiler.

type VOLT is delta 0.125 range 0.0 .. 255.0;

ASCET contains one generic model type “continuous”

• Equivalent to “real” in Ada

• Precision/intervals and data types
are specified.

• Model type is realized as “fixed”

• or “float” in the implementation

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

12

Safety critical systems with ASCET
ASCET vs. Ada: Fixed point arithmetic

Ada:

• Arithmetic between fixed point types is only allowed if they have the
same precision, except for multiplication and division, where the target
precision must be specified.

• Semantics are specified by the LRM, but complex (compiler is only
required to provide at least the specified precision - the “small” of the
type)

ASCET:

• Arithmetic between all “continuous” expressions is allowed. The code
generator takes care of the details: overflow protection, re-scaling,
selection of precision in complex expressions.

• Semantics are defined by the code generator

• And the code generator is proven by use

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

13

Safety critical systems with ASCET
ASCET vs. Ada: Exceptions

Ada throws runtime exceptions in dangerous situations:

• Array index violations

• Division by Zero

• Integer overflow

• Assignment interval mismatch

The ASCET code generator implements domain-specific default behavior:

• Division by Zero is protected, returning the max value

• Integer overflow is avoided

• Saturated arithmetic on specific microcontrollers is supported

• Assignments are limited to the specified range where necessary

• Array indices are not limited – cannot assume a default behavior.

• Array index violations are not expected to occur in practice due to checks in the
model or extensive testing.

2

22

132
2

0

×







+

−

ba

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

14

Safety critical systems with ASCET
Simulation behaviour versus ECU code behaviour

• Sequence numbers in ASCET give
complete control over the model
and hence the code.

• This ensures the ECU code
behaviour to be same as the
simulation behaviour.

• For ECU code generation, the
message duplication is handled
automatically by ASCET.

• Human errors are avoided.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

15

Safety critical systems with ASCET
Challenges associated with Model Based Design approach

• Simulation and implementation:

• Function development may use all possible components/blocks including the
continuous time blocks which are not suitable for code generation. Final stage of
code generation requires high level of model customisation to fit the memory and
run time requirements of the ECU.

• Code optimisation versus model optimisation:

• optimising the model for achieving a particular RAM/ROM/Runtime is an important
phase in the development and there exists no universal solution for achieving this.

• The code generator would have some flexibility to achieve this, nevertheless in
practice the engineer has to decide carefully on a case to case basis.

• Industry practice is to have a combined approach of reviewing the model and the
code together and optimising the model. This would take at-least a few iterations
and the behaviour of code generator plays an important role here.

• Domain specific compliance

• Example: Compliance with MISRA-C:2004 standard for automotive applications.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

16

Safety critical systems with ASCET
Challenges associated with Model Based Design approach

• A given logic can be implemented in many ways in the model and this is similar to the C
coding patterns/style which is specific to a particular engineer. Different models will give
rise to different C code.

• The code generator has to generate a code for various permutations and combinations
of the modelling blocks. Since the mapping algorithms has to handle many blocks and
generate C code using finite C constructs, the mapping cannot be efficient unless the
number of blocks are less.

• Standard industry practice is to use modelling guidelines
• Also model libraries are developed and maintained by

development teams to standardise the process.

• Similar to the C coding, model development also demands
specific skills

• Function development team would focus mainly on the algorithm

• Code generation team would customise the models for ECU code generation

• One advantage is that the for a given model construct the code generator will always
consistently repeat the code style.

Modelling
blocks

C Code

M to N mapping

Where M > N

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

17

Safety critical systems with ASCET
Validating the code generator

• Manually reviewing the code:

• Compare the code with the model to validate the correctness of the code generator.

• Automation is possible here. A given piece of code is compared with a
corresponding model and the generated code structure is validated against the
expected code structure.

• dynamic testing:

• The generated code is executed with known inputs and the output is compared to
an expected result. If a comprehensive set of test scenarios exists for a given
model, they can as well be used to verify a new version of the code generator.

• The two above approaches have the inherent limitation to only verify the code
generator for a specific model on a given target processor.

• In principle, it is not possible to transfer the results gained in a PC simulation
to a rapid prototyping system or the final controller hardware.

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

18

Safety critical systems with ASCET
Summary

ASCET

• is a domain specific language for control algorithms in the automotive industry

• Enables early validation of algorithms using floating point arithmetic

• Offers complete control to specify the sequence of execution and hence no
difference between model behaviour and code behaviour.

• Provides convenient fixed point arithmetic

• Code generator makes sensible decisions for the usual problems of overflows, re-
scaling etc.

• Generation of fixed point arithmetic is done consistently

• Models need to be tested to see if the achieved precision is sufficient

• Fixed point settings are separated from the model and hence conforming to the
ASAM-MCD-2C standard

Design of safety critical systems with ASCETl Gunter Blache, Srikanthan Krishnan l 30th September 2009 l
© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.

19

References

• ISO/IEC 9899:1999, Programming languages - C, International Organization for
Standardization, 1999

• Les Hatton, Safer C: Developing software in high integrity and safety-critical systems,
McGraw-Hill, 1995

• Stephen Johnson, Lint, a C program checker, Computer Science Technical Report 65,
Bell Laboratories, December 1977

• QA-C : Advanced static code analysis for C,
http://www.programmingresearch.com/QAC_MAIN.html

• Guidelines for the use of the C language in critical systems, ISBN 0-9524156-2-3, MIRA,
October 2004

• http://www.eclipse.org/projects/project_summary.php?projectid=modeling.emf

• Guidelines for the application of MISRA-C:2004 in the context of automatic code
generation, ISBN 978-1-906599-02-6, MIRA, November 2007

• Ingo Stürmer, Mirko Conrad, Heiko Dörr, and Peter Pepper, Systematic Testing of
Model-Based Code Generators, IEEE Transactions on Software Engineering, Vol. 33, No.
9, September 2007

• Diomidis Spinellis, Global Analysis and Transformations in Preprocessed Languages,
IEEE Transactions on Software Engineering, Vol. 29, No. 11, November 2003

• http://www.asam.net

