
OS Driver Test Effort Reduction via Operational Profiling∗

Constantin Sârbu†, Stefan Winter†, Nachiappan Nagappan‡ and Neeraj Suri†

Technische Universität Darmstadt† Microsoft Research‡

Hochschulstr. 10, Darmstadt, Germany Redmond, WA, USA
{cs,sw,suri}@cs.tu-darmstadt.de nachin@microsoft.com

1 Introduction and Issues
Operating Systems (OS’s) constitute the operational core

for computing devices, and consequently, the OS’s ability to
sustain operations determines the dependability level of the
provided system services. In order to facilitate their applica-
bility to a variety of hardware platforms, OS’s have evolved
into complex, componentized software entities whose key
function is to provide applications access to the system’s hard-
ware resources. Within the OS, the key components dominat-
ing the cause of OS failures are the device drivers (DDs), pre-
cisely the OS parts designed to enhance the OS’s support for
hardware. Unfortunately, despite intensive efforts to elevate
DD’s robustness levels by employing varied test paradigms,
the existing DDs still exhibit very high failure rates. Ob-
viously, testing the complete state space of a DD is neither
technically or economically viable. Based on our empirical
DD evaluations, we conjecture that the testing deficiencies are
the consequence of missing key parts of the DD’s operational
states in the process of testing, a situation illustrated in Fig. 1.

Faults (Defects)

Actual operational space

Area covered by testing

Total DD State Space

Fig. 1. Test space vs. operational space.
The better the DD’s actual operational states can be iden-

tified, the better (focused and effective) the testing of those
states can be achieved. Hence, the central premise behind our
work involves the characterization of a DD’s operational pro-
file, and using it for focusing subsequent testing to the func-
tional areas likely to be exercised over the DD deployment,
i.e., “execution hotspots”. Revealing the execution hotspots
helps test space identification and test case selection, two as-
pects critical for reducing the test effort without losing testing
process’ adequacy.

∗Supported in part by Microsoft, IBM, GK MM and EC Inco-Trust and
Inspire.

As a preliminary contribution toward this goal, we have
developed two novel methodologies for revealing DD’s opera-
tional state space from binaries sans source code access [5–8].
Currently, our research focuses on the expansion of our exist-
ing operational profiling framework [5] into a full-fledged test
tool for DDs.

Related work: Ball and Larus acknowledged the appli-
cation of path profiling for test coverage assessment [1], “by
profiling a program and reporting unexecuted statements or
control flow”. Instrumentation of binaries was used to obtain
instruction traces and to identify execution paths. The paths
ended at loop and functional boundaries, a limitation resolved
later by the “whole program paths” approach [2]. However,
these approaches are not directly applicable to DDs, as in-
strumentation induces high overheads, thus limiting the use
of such approaches inside the OS kernel space.

Among others, Leon and Podgursky [3] used profiles gen-
erated by individual test cases and a clustering technique for
evaluating test suite minimization by selecting one test case
per cluster for reducing test efforts. Their approach was de-
signed for general purpose software, thus also not being di-
rectly applicable for kernel-mode OS components.

2 Identifying Execution Hotspots in DDs
In contrast to contemporary efforts, we have developed two

distinct methodologies to capture and analyze the operational
profiles of kernel-mode DDs [5]. The first – termed as the
state-based operational profile (SOP) [6] – is based on the
state characterization of the I/O traffic between a selected DD
and the rest of the OS kernel. The second – termed as the
execution path profile (EPP) [7] – observes the functional
calls made by the respective DD in the operational phase,
thus revealing the code paths followed at runtime. The two
approaches are complementary and are directly applicable to
DD binaries. Moreover, they do not require source-code ac-
cess to any of the involved OS kernel components.

Our DD profiles reveal execution hotspots a) as DD
reached states (the SOP) and b) as traversed code paths (the
EPP). As a DD’s subset of states visited at runtime represents
only a small fraction of the total state space [6], it highlights
the areas to be primarily tested, subsequently enabling for test
effort reduction. Complementing the SOP, the EPP discov-

Copyright ISSRE 2009



ers execution hotspots as frequently traversed DD code paths.
Such code paths are identified as call sequences to kernel
functions implemented externally to the selected DD. Based
on likeness (computed using string similarity metrics), the
code paths are clustered into equivalence classes, thus helping
to identify execution hotspots as primary targets for testing.

3 Preliminary Experimental Results
To validate the effectiveness of the DD operational pro-

filing process, we have conducted a series of extensive case
studies including over fifty actual Windows XP and Vista
DDs [5]. The key resulting observation is that the distinct
code paths taken at runtime constitute only a small fraction of
the total number of observed paths. For instance, by exercis-
ing the Windows XP floppy disk driver with several off-the-
shelf performance and reliability benchmarks only 2.37% of
all captured code paths were found to be distinct. Moreover,
the observed distinct code paths are very similar to each other,
thus revealing the execution hotspots as relatively small areas
in the DD’s execution space. Therefore, the testing space (and
implicitly, the associated test effort) can be drastically reduced
by “re-focusing” it onto the newly revealed hotspots.

The first research question guiding our effort toward reduc-
ing test effort is: What is the area covered by actual DD test
tools? To answer this question we exercised the aforemen-
tioned floppy DD with a powerful robustness test tool from
Microsoft1 (additional to the benchmarks). Fig. 2 is a mul-
tidimensional scaling (MDS) plot where points represent the
distinct code paths followed for each benchmark.

●●●●

●●

●●

●●

●●

●●

●●

●●

●

Sandra

DiskTestPro

Enable_Disable
BurnInTest

DC2
1

Fig. 2. Floppy DD’s execution space (MDS plot)

In MDS plots the relative distance between two data points
visually express their dissimilarity. Hence, the agglomera-
tions of data points in the Fig. 2 reveal multiple execution
hotspots. Supporting our initial assumption that tested areas
do not always match the operational areas, most of the code
paths followed by DC21 are located far-off the main execu-
tion hotspots. We are currently investigating multiple other
DD test tools for their followed code paths.

The second pursued research question is: How to tune test
tools to match execution hotspots? A possible solution to this

1Microsoft’s Device Path Exerciser (DC2) [4], chapter 21, pp. 671

problem is to use the DD profiles obtained for various use
cases and infer the test cases that trigger the following of the
same paths inside the DD code. Next, the test cases are fed to
an existing test tool.

The selection of test cases should consider the information
obtained from a prior DD profiling phase in order to reduce
the overall testing overhead. This will also help an early iden-
tification of the insufficiently tested DD areas and assess their
impact on DD dependability, together with an investigation of
the possibility to correlate known OS failures to DD opera-
tional profiles.

4 Discussion and Future Work
In order to expand the presented ideas into an operational

profile-based DD testing tool, a key prerequisite is validating
them against a wider spectrum of DDs, existing test tools and
representative use cases.

Goal 1: Currently, we are considering various test tools
which are both “relevant” (intensively used for testing ac-
tual DDs) and “customizable” (provide access to the used test
cases). Finding the “typical usage” for the targeted DD consti-
tutes an important current research direction for defining the
test space of the future tool.

Goal 2: Considering the source code (or, alternatively, the
binary images) of the profiled DDs, we intend to map the ob-
tained code paths to the control flow graphs. This should serve
as a validation for our operational profiling methodology by
quantifying its capacity to disclose the followed code paths.
Moreover, we believe that this evaluative approach provides
for proper comparisons among existing black- and white-box
DD test methods from the code coverage perspective.

Goal 3: An ongoing research direction is a quantitative
study of driver-relevant workloads that considers using our
profiling mechanisms to characterize test workloads from a
DD’s perspective. This information would guide the choice
of adequate workloads for specific test scenarios.

References
[1] T. Ball and J. R. Larus. Efficient path profiling. In MICRO-29,

pp. 46–57, December 1996.
[2] J. R. Larus. Whole program paths. In ACM SIGPLAN, vol-

ume 34, pp. 259–269, 1999.
[3] D. Leon and A. Podgurski. A comparison of coverage-based

and distribution-based techniques for filtering and prioritizing
test cases. In Proc. ISSRE, pp. 442–453, 2003.

[4] P. Orwick and G. Smith. Developing Drivers with the Windows
Driver Foundation. Microsoft Press, Redmond, 2007.

[5] C. Sârbu. Operational Profiling of OS Drivers. PhD thesis,
Technische Universität Darmstadt, May 2009.

[6] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Improving Ro-
bustness Testing of COTS OS Extensions. In Proc. ISAS, LNCS
4328, pp. 120–139, Springer Verlag, 2006.

[7] C. Sârbu, A. Johansson, and N. Suri. Execution Path Profiling
for OS Device Drivers: Viability and Methodology. In Proc.
ISAS, LNCS 5017, pp. 90–107, Springer Verlag, 2008.

[8] C. Sârbu, A. Johansson, N. Suri, and N. Nagappan. Profiling
the Operational Behavior of OS Device Drivers. In ISSRE, pp.
127–136, 2008.


	Introduction and Issues
	Identifying Execution Hotspots in DDs
	Preliminary Experimental Results
	Discussion and Future Work

