
Software Assurance Arguments vs. Formal Mathematical Arguments – A
Complementary Role

Ibrahim Habli, Zoë Stephenson, Tim Kelly, John McDermid
Department of Computer Science

University of York
York, United Kingdom

Ibrahim.Habli, Zoe.Stephenson, Tim.Kelly, John.McDermid@cs.york.ac.uk

Abstract—This paper discusses the complementary role of
software assurance arguments and formal mathematical
arguments in justifying the achievement of safety and
reliability properties within critical applications. This paper
reviews the theoretical foundation of this area and proposes a
way forward for combining the use of these two forms of
arguments in systems and software engineering.

Keywords – Software assurance arguments, formal logic,
software certification

I. INTRODUCTION
In critical applications, where software systems have to

achieve high reliability targets (e.g. less than 10-9 failure rate
per flying hour for certain airborne software), software
engineers have to produce rigorous evidence that
demonstrates the satisfaction of these targets. In certain
sectors, the assurance of the reliability and safety of software
is justified by compliance with certain process-based
certification standards, i.e. by applying a set of techniques
and methods that these standards associate with a specific
integrity level, typically in the form of a probability of
dangerous failures. Recently, there has been a shift towards
an alternative approach to certification that requires the
substantiation of claims concerning reliability or safety by
appealing to an explicit, well-structured and reasoned
argument. This argument typically forms the core part of a
software assurance case. Software assurance cases are
inspired from the concept of safety cases, the submission of
which is a core requirement in many safety certification
standards, particularly in the United Kingdom [1] [2]. A
safety case is a “structured argument, supported by a body of
evidence that provides a compelling, comprehensible and
valid case that a system is safe for a given application in a
given operating environment” [1]. Although structurally
similar to safety cases, assurance cases serve a wider purpose
beyond just safety to demonstrate other dependability
qualities such as reliability, security and performance.

The argument in a software assurance case explicitly
represents the claims, evidence, context and assumptions
concerning certain software behaviours. These elements of
an assurance argument are connected in such as way that
shows how the claims regarding safety, reliability or security
are supported by evidence within the assumed context that is
defined for the argument. Software assurance arguments are
predominantly inductive, i.e. offering support for the top-

level claim which is short of certainty. Due to the subjective
nature of a software assurance argument, it typically falls
within the scope of informal logic, compared to formal and
mathematical logic which is based on mathematical
semantics and theory.

There are many applications of formal logic in systems
and software engineering that have demonstrated the
effectiveness of mathematical approaches in achieving high
confidence in the satisfaction of some of the safety and
reliability properties. These approaches produce
mathematical evidence which substantiates a claim of safety
or reliability by exhaustively examining the entire design
space or all possible execution paths within a software
artefact. The success of formal mathematical approaches in
software engineering has been attributed to advances in
model-checking and theorem-proving [3]. For example, in
theorem-proving, a proof begins with a hypothesis (a
theorem, which is typically some system claim) to be shown
and an axiomatic basis (or interpretation) on which to base
the proof. A typical proof method would combine
substitution-based rewriting with strategies such as proof by
cases and proof by contradiction. This process is often
supported using tools such as automated theorem-provers. In
many domains, mathematical evidence generated from
model-checking and theorem-proving takes precedence over
other forms of evidence generated from testing or simulation
[1] [2].

That said, the central matter considered in this paper is
the following: what role does a software assurance
argument play in the presence of formal analytical evidence
which is based on a mathematical argument? Further, is
there a contradiction in that the same standards that require
the submission of an explicit assurance argument give
precedence to mathematically-based approaches?

II. INTEGRATED APPROACH
In this paper, we contend that assurance arguments and

mathematical arguments play a complementary role. This
complementary role often takes these two forms (Fig. 1):

• Mathematical arguments supporting assurance
arguments: this is when the mathematical argument
forms a core part of the assurance argument and
therefore provides one of the strongest forms of
evidence that supports certain claims within the
assurance argument;

Copyright ISSRE 2009

• Assurance arguments supporting mathematical
arguments: this is when the assurance argument is
used to provide justification concerning the process
by which the mathematical argument is constructed.

In some cases, both arguments completely merge. One of
these cases is the following:

• Mathematical arguments communicated and
explained in the format of assurance arguments.

Figure 1. (a) Assurance argument supported by formal evidence (b)
Assurance argument justifying trustworthinesss of formal evidence

The discussion regarding combining formal and informal
logic is an area of active research within the philosophy of
science community. This is summarised rather eloquently by
Ian Dove as follows [4]:

“Mathematicians already, though perhaps tacitly, use the
techniques of informal logic. They use them when they
appraise proofs, and they use them when they assess
mathematical reasoning that isn’t proof. This is not to say
that mathematicians ought to pay more attention to informal
logic or argumentation theory. Rather, this suggests that an
accurate philosophy of mathematics ought to recognize this
use. Hence, inasmuch as informal logic is already a part of
mathematical practice, it makes sense to make the use
explicit as part of a larger project to construct a philosophy
of mathematics that takes practice seriously.”

Our objective in this paper is to propose a pragmatic
consideration of this problem within the high-integrity
software engineering domain. We believe that plenty of
research has been done on mathematical arguments, mainly
targeting model checking and theorem proving. Also, plenty
of work has been done on assurance arguments, particularly
in the safety area. However, little has been done on how to
combine the two approaches in this domain.

The relationship between the domain expert developing
the assurance argument and the mathematical expert
generating the mathematical proof can be seen as follows.
The domain expert defines the claims that need to be
substantiated and the context within which these claims are
made. The mathematical expert then formulates the
hypothesis regarding these claims and the assumptions that
the proof relies on. Then, together, the domain expert and the
mathematical expert validate that the proof supports the
claims, given the assumptions made during the proof and the
context assumed for the claims. Finally, the mathematical
expert assures the process by which the proof is generated by
communicating and justifying the methods used, the

competency of the mathematicians deriving the proof and the
acceptability of the assumptions made using the proof.

Over the last four years, we have been supporting our
industrial partners by integrating formal mathematical
methods within their engineering processes, particularly
helping them with embedding mathematical evidence within
their assurance arguments. More interestingly, we have been
supporting on-going effort addressing the justification of the
trustworthiness of mathematical evidence by means of
assurance arguments. For example, we have devised a
prototype mathematical approach to justifying the absence of
run-time exceptions caused by floating-point arithmetic
approximation errors. We have shown how mathematical
evidence generated from this approach can form part of the
assurance argument relating to robustness properties. We
have also shown how an assurance argument can be used to
justify the soundness of the mathematical approach, potential
limitations of the approach, assumptions regarding the
completeness of the mathematical rules and also the integrity
of the tool implementing this mathematical approach. We
have presented this work to representatives of certification
authorities in the civil aerospace domain. It was well-
received as a potential way to bridge the gap between
existing certification practices and current state-of-the-art
with regard to use of mathematically-based software
engineering techniques.

III. WAY FORWARD
Many standards have started to recognise and accept the

role of both assurance arguments and mathematical
arguments [1] [2]. This should be complemented by
enriching current software engineering literature by the
publication of successful patterns on the combined use of
these two arguments. This should support industrial practices
by providing guidance and worked examples on how the use
of mathematical approaches can improve confidence in the
safety and reliability of software systems. In particular, we
plan to develop an assurance argument catalogue which
captures, in a reusable format, how formal mathematical
arguments, based on theorem proving and model checking,
have been successfully used in practice within an assurance
argument approach. This catalogue will be a live artefact,
updated regularly, providing practical guidance on how
engineers can embed mathematical arguments within an
assurance case, particularly for satisfying various
certification requirements.

REFERENCES
[1] UK Ministry of Defence, 00-56 Safety Management Requirements

for Defence Systems, Part 1: Requirements, Issue 4, UK MoD, 2007.
[2] UK Civil Aviation Authority, SW01 - Regulatory objective for

software safety assurance in air traffic service equipment, CAP 670:
air traffic services safety requirements, published by the UK Civil
Aviation Authority, 2009.

[3] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT
Press, 1999.

[4] I. J. Dove, “Towards a Theory of Mathematical Argument”,
Foundations of Science, Springer, vol 14, pp 137-152, March, 2009.

	I. Introduction
	II. Integrated Approach
	III. Way Forward
	References

