

Software Testing Technique Based on an Extended Pushdown Automaton
 for Undo/Redo Functions

Tomohiko Takagi Zengo Furukawa
Dept. of Reliability-based Information Systems Engineering,

Faculty of Engineering, Kagawa University
Takamatsu, Kagawa, Japan

Abstract—We propose a new testing technique for undo/redo
functions (UR functions) that play an important role in
realizing the usability of software. In this technique, an
extended pushdown automaton (ePDA) that is a state machine
with two stacks for UR functions is used for defining software
specifications and generating testcases. This paper shows the
overview of UR functions, the definitions of an ePDA and
coverage criteria, a simple example, and so on.

Keywords - software testing; undo/redo; state machine;
pushdown automaton; testcase; coverage

I. INTRODUCTION
Most software has undo/redo functions (UR functions).

The undo function is for canceling a previous user operation
and returning to a previous state of software, and the redo
function is for reperforming a user operation canceled by an
undo function. UR functions play an important role in
realizing the usability of software, and their faults seriously
affect the quality of software. However, a testing technique
for UR functions has not been established.

Reference [1] showed the simple model-based testing
technique using a pushdown automaton (PDA) for testing
undo functions. A PDA is a state machine with a stack, and it
can be used as a description language of software
specifications. Recording the history of state transitions on
the stack enables testcase generation in which undo functions
are included. However, [1] didn't consider redo functions and
the detailed mechanism of UR functions. So in this paper we
propose a new testing technique for UR functions by
extending the technique of [1].

II. UNDO/REDO FUNCTIONS
This section shows the overview of the mechanism of

UR functions, and then illustrates its faults.
UR functions provide users the way to cancel a previous

user operation or to reperform a canceled user operation.
There are user operations that UR functions are not available
to; for instance, UR functions can't be executed for a user
operation that interacts with external systems, or that doesn't
change the state and data of software. Regarding user
operations that UR functions are available to, their execution
history is stored in the memory for UR functions (stacks with
limited capacity). The history includes the previous state of
software, differences of data resulting from an executed user
operation, and so on. Some user operations may trigger the
initialization of the stacks; for instance, editor software

would initialize the stacks when its user closes his
manipulated file. When the size of a history exceeds the
capacity of a stack, the oldest element in the history is
automatically removed in order to store a new element.

The typical faults of UR functions are as follows:
• UR functions aren't available to a user operation that

the UR functions should be available to.
• Performing UR functions can't reproduce the

previous state and data of software correctly.
• Software has unpredictable behavior because the

memory for UR functions was destroyed.
The difficulty of testing UR functions is in that a failure

may not appear soon even if a faulty function was executed.
It requires the systematic testing technique for UR functions.

III. TECHNIQUE OVERVIEW

A. Definitions
This section shows the technique overview of testing UR

functions using an extended PDA (ePDA). This technique
consists of the following four definitions.
Definition 1: ePDA for describing software specifications

ePDA = (S, i, F, E, u, r, A, T, Hu, Hr),

where S is a set of states in ePDA; i is an initial pseudo state
in ePDA; F is a set of final pseudo states in ePDA; E is a set
of events in ePDA, and represents general user operations
(UR functions are available to part of them, but they don't
invoke UR functions); u and r are special events in ePDA,
and represent user operations of invoking undo functions and
of invoking redo functions respectively; A is a set of actions
to manipulate Hu (a stack for undo functions) and Hr (a stack
for redo functions) in ePDA, and it is expressed as A = {ap,
an, ai}; ap is the action to push a current state onto Hu, an is
the action not to do anything for stacks, and ai is the action to
initialize both of the stacks; T is a set of transitions in ePDA;
an element of T is expressed as 4-tuple (x, e, a, y) elements
of which represent a from-state, an event, an action for stacks
and a to-state respectively, and it satisfies x∈(S∪{i}) ∧ e∈E
∧ a∈A ∧ y∈(S∪F) ∧¬ (x=i ∧ y∈F).

The implicit behavior rule of ePDA (i.e., software with
UR functions) is as follows. When ePDA accepts an element
of E, it performs a specified action, and then goes to a next
state based on a current state and the accepted element.
Additionally, Hr is initialized if Hr isn't empty. When ePDA
accepts u, it pushes a current state onto Hr, and then returns

Copyright ISSRE 2009

to a previous state that is popped from Hu. ePDA shall not
revisit i by accepting u, and shall not accept u in an element
of F. When ePDA accepts r, it pushes a current state onto Hu,
and then returns to a state that is popped from Hr.

When ePDA has the above rule, test engineers aren't
required to explicitly define the transitions triggered by u and
r. Since the rule can be implemented in a testcase generation
tool, it reduces their work load.
Definition 2: A set of measuring objects for a state UR
coverage criterion in ePDA

OS = { s | ∃t (t∈T ∧ t[3]=ap ∧
(t[1]=s ∧ t[4]∉F ∨ t[4]=s ∧ t[1]≠i)) },

where t[x] represents the xth element of 4-tuple t. A
measuring object is an item that should be tested to increase
coverage in a specified coverage criterion. In a state UR
coverage criterion, testcases are designed so that all the states
of having transitions with ap are revisited by u or r at least
once. Test engineers can confirm that each state is correctly
reproduced by UR functions at least once. This criterion
doesn't give any combinations among transitions, then it
would be useful only as a preliminary step.
Definition 3: A set of measuring objects for an N-switch UR
coverage criterion (N≥0) in ePDA

ON = { (t1, t2, ⋯ , tn) | n=N+1 ∧
 ∀j (1≤j≤n → tj∈(T∪Tu∪Tr)) ∧
 ∃k (1≤k≤n → tk∈(Tu∪Tr)) ∧
 ∀l (1≤l≤n−1 → tl[4]=tl+1[1]) },

where Tu and Tr are sets of implicit transitions triggered by u
and r respectively; the to-states of these transitions are
dynamically determined by the contents of stacks. In an N-
switch UR coverage criterion, testcases are designed so that
all the sequences of successive transitions of length N+1 (in
each sequence there are always one or more elements of Tu
and/or Tr) are performed at least once. This is the extension
of Chow's N-switch criterion [2]. Test engineers can confirm
that all the sequences of successive transitions of length N+1
are correctly performed by UR functions. This criterion
includes the state UR coverage criterion, and would be
effective against the faults described in section II.
Definition 4: A general formula for coverage

C(O')=
|O'|
|O|

 ,

where |O| represents the number of elements of O; O is a set
of measuring objects, and O' is a set of elements of O that
have been tested. When O = OS, this formula is for state UR
coverage, and when O = ON, this is for N-switch UR
coverage.

B. Simple Example
We revised the PDA described as an example in [1] so as

to make it fit for this technique, which is shown in Fig.1. The
measuring objects of a state UR coverage criterion are states
2, 3 and 4; and the measuring objects of a 0-switch UR

coverage criterion are transition sequences 2u2, 2r2, 2r3, 2r4,
3u2, 3r4, 4u2 and 4u3. As described in definition 1, u and r
represent an undo event and a redo event respectively. For
example, the state UR coverage of a testcase a1b2c4u2r4c2e
is about 67% (2/3) because states 2 and 4 are revisited by
performing u or r. On the other hand, 0-switch UR coverage
is 25% (2/8) because 4u2 and 2r4 are performed.

IV. CONCLUSION AND FUTURE WORK
In section II, user operations were classified into three

types; i.e., (i) ones UR functions are available to, (ii) ones
UR functions aren't available to, and (iii) ones that trigger the
initialization of stacks. The type of a user operation in an
ePDA depends on the explicit action of a transition; (i) are
transitions with ap, (ii) are transitions with an, and (iii) are
transitions with ai. The definition of an ePDA in this paper is
the fundamentals and can be extended; for instance, it may
be required to introduce special events that perform
undo/redo of multiple user operations. Additionally this
paper showed the definitions of UR coverage criteria and
examined their testcases. The UR coverage criteria are the
extension of existing criteria, and can be extended further
based on other existing criteria.

The advantage of this technique is in that the implicit
behavior rule of an ePDA helps test engineers to use the
ePDA easily. We plan to develop UR coverage criteria, and
then evaluate the effectiveness through trial applications to
actual software testing.

REFERENCES
[1] T. Takagi and Z. Furukawa, "GB Coverage Criteria: The

Measurement for Testing a "Go Back" Function Based on a
Pushdown Automaton", Proceedings of 19th International
Symposium on Software Reliability Engineering, CD-ROM, 2008.

[2] T.S. Chow, "Testing Software Design Modeled by Finite-State
Machines", IEEE Transactions on Software Engineering, Vol.SE-4,
No.3, pp.178-187, 1978.

1. Inputting logon information

2. Inputting order information

3. Inputting credit card information

4. Confirming the order

e. click “Logoff” button / anb. click “Logon” button / an

c. click “OK” button
[payment=COD] / ap

c. click “OK” button / ap

c. click “OK” button / ai

c. click “OK” button
[payment=credit card] / ap

d. click “Clear” button / ap

a. start / an

Figure 1. Example of an ePDA (extended pushdown automaton)

of a simple internet shopping system.

