
A Rule Set to Detect Interference of Runtime
Enforcement Mechanisms*

Somayeh Malakuti, Christoph Bockisch and Mehmet Aksit
Department of Computer Science, University of Twente

P.O. Box 217 7500 AE Enschede, The Netherlands
{s.malakuti, c.m.bockisch, m.aksit}@ewi.utwente.nl

Abstract—Runtime enforcement aims at verifying the active
execution trace of executing software against formally specified
properties of the software, and enforcing the properties in case
that they are violated in the active execution trace. Enforcement
mechanism of individual properties may interfere with each
other, causing the overall behavior of the executing software to
be erroneous. As the number and the complexity of the
properties to be enforced increase, manual detection of the
inferences becomes an error-prone and effort-consuming task.
Hence, we aim at providing a framework for automatic detection
of interferences. As the initial steps to create such a framework,
in this paper we first provide formal definitions of an
enforcement mechanism and enforcement operators. Second, we
define a rule set to detect the interference among properties.

Runtime Enforcement; Interference Rules; Automatic
Interference Detection; ∗

I. INTRODUCTION
Reliability is the ability of a software system to perform its

required functions under stated conditions for a specified
period [1]. It can be attained via different techniques among
which we are interested in applying the runtime enforcement
technique [2] to ensure functional correctness of the software.
Runtime enforcement is the process of checking whether the active
execution trace of software adheres to given properties of the
software, and enforcing the properties by modifying the
execution trace of the software in case that the properties are
not satisfied by the executing software.

Complex software has multiple properties to be verified and
enforced at runtime. According to the separation of concerns
principle, the properties may be specified individually; hence,
they are also verified and enforced individually by most of the
existing approaches [2-7]. However, since the enforcement of
the properties may interfere with each other the individual
verification and enforcement of the properties does not
necessarily guarantee the overall correctness of the executing
software. For example, assume that to enforce the property A,
we must invoke the method m; whereas enforcement of the
property B may prevent the execution of m. Hence, the

∗ This work has been carried out as part of the TRADER project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Bsik
program.

enforcement of B interferes with the enforcement of A, causing
the overall behavior of the executing software to be erroneous.

In [8, 9], a language to compose the runtime enforcement
mechanisms in a non-interfering way is provided; but, the
developer must manually detect the interferences. However, as
the number of properties for complex software increase, we
believe that manual detection of the interferences become an
effort-consuming and error-prone activity for the developer.

In this paper, we aim at providing a framework to
automatically detect the interference of enforcement
mechanisms. As the initial steps to create such a framework,
we provide a formal definition of a runtime enforcement
mechanism along with our enforcement operators; and we
define a rule set to reason about possible interferences among
the properties. The rules can further be used to develop a tool
for automatic detection of the interferences.

The rest of this paper is organized as follows. In section II,
our running example and the inference problem among the
properties are explained. In section III, we provide a formal
definition of an enforcement mechanism, our enforcement
operators, and our rule set to detect the interference. Finally,
section IV discusses the conclusions and future work.

II. PROBLEM STATEMENT
Usually, for complex software multiple properties, which

are developed incrementally or even by different groups, must
be enforced at runtime. Generally, the enforcement
mechanisms of the properties can interfere with each other. In
subsection A we provide an example of such software; and in
subsection B, we provide examples of such properties which
interfere in complex ways.

A. Running Example
The example software, whose runtime behavior is to be

verified, is a media player called MPlayer [10]. MPlayer is
composed of several interacting components and is executed as
two threads, so-called UI and Core. Fig.1 provides an overall
view of MPlayer components and their interactions in handling
the user’s request of playing a media file. The component User
Interface receives the command Play along with the media file
name from the user; and writes the command in Command
Buffer by invoking the method WriteCmd. The component
MPCore first reads the buffered command by invoking the

Copyright ISSRE 2009

mailto:@ewi.utwente.nl

method ReadPlayCmd on Command Buffer, then it invokes the
method OpenStream on the component Streaming.
Consequently, the component Streaming creates a file-handler
for the media file and checks that the media file is not
corrupted. Afterwards, until the end of the media file is
reached, MPCore repeats the following five steps: 1) it reads
chunks of media file by invoking the method ReadChunk on
Streaming. 2) It separates the video and audio streams of the
media chunk. 3) It invokes the method PlayAudio on Audio
Processor to send the audio stream to the audio output. 4) It
invokes the method DecodeVideo on Video Processor to
decode the video stream; and 5) it invokes the method
PlayVideo on Video Processor to play the video stream. After
playing all media chunks, MPCore invokes the method
CloseStream on Streaming.

3.
2.

Pl
ay

Au
di

o

3.
4.

Pl
ay

Vi
de

o

Figure 1. An overall view of MPlayer architecture

B. Interference of Runtime Enforcement Mechanisms
Assume that we want to ensure that the requested media file

is being played correctly by enforcing the following property at
runtime:

− P1: All of the specified method executions for the
thread Core must occur according to the specified
order in Fig.1; otherwise, the execution of methods
which are invoked out of order must be prevented.

To enforce P1, we make use of an existing runtime
verification system, for example MOP [4]. Fig.2 shows a
specification of P1 in the language of MOP. For the sake of
brevity some details of the MOP language are omitted. Here,
line 1 specifies that the event ev_ReadPlayCmd occurs before
each execution of the method ReadPlayCmd. Likewise, lines 2
to 8 define the events corresponding to the other method
executions. Line 9 defines the expected sequence of executions
as a predicate in extended regular expression (ERE). Line 10
specifies that the execution of an invoked method must be
prevented when the specified extended regular expression is
violated.

Assume that the MPlayer functionality is extended to
support new video codecs whose video streams often become
out of synch with their audio streams. Hence, in addition to P1,
the developer wants to enforce the property P2.

− P2: The audio and video streams can become out of
synch; however, their timing difference must not be
more than ± d milliseconds. If this property is violated,

playing the media file must be restarted from the
beginning.

1. event ev_ReadCmd before: execution(* ReadPlayCmd(..)){}
2. event ev_OpenStream before : execution (* OpenStream(..)){}
3. event ev_CloseStream before : execution (* CloseStream(..)){}
4. event ev_NotEoFndOfMedia before : execution (*
NotEndOfMedia (..)){}
5. event ev_ReadChunk before : execution (* ReadChunk (..)){}
6. event ev_PlayAudio before : execution (* PlayAudio(..)){}
7. event ev_DecodeVideo before : execution (* DecodeVideo(..)){}
8. event ev_PlayVideo before : execution (* PlayVideo(..)){}
9. ERE: ev_ReadCmd ev_OpenStream (ev_NotEndOfMedia
 ev_ReadChunk ev_PlayAudio ev_DecodeVideo
 ev_PlayVideo)* ev_CloseStream
10. violation { //prevent the execution}

Figure 2. A specification of P1 in MOP

Fig.3 defines P2 using the raw-specification language of
MOP. Line 1 defines and initializes the monitoring variable d.
Line 2 specifies that the event ev_DecodeVideo occurs before
each execution of the method DecodeVideo. Line 3 specifies
that upon occurrence of this event, the method
CalculateDifference, which is implemented in the component
MPCore, must be invoked to calculate the difference between
audio and video timers. Line 4 verifies whether the difference
is within the accepted range of ± d; if the difference is not
within this range, playing of the current media file is stopped
and restarted by invoking the methods CloseStream and
OpenStream in order.

1. float d = 40.0;
2. event ev_DecodeVideo before : execution(* DecodeVideo(..)) {
3. float diff = MPCore.CalculateDifference();
4. if (abs(diff) >= d) {CloseStream(); OpenStream(); }
5. }

Figure 3. A specification of P2 in MOP

Here, the properties P1 and P2 are enforced individually;
however, their individual enforcement does not necessarily
guarantee the overall correctness of the software. For example,
assume that at some point during the execution of MPlayer, the
method DecodeVideo and all other expected methods before it
have been invoked in the expected order; hence according to
P1, the method PlayVideo (the event ev_PlayVideo) must be
invoked (must occur) next. The invocation of DecodeVideo
also causes the verification of P2 to start. If the video and audio
streams are not synchronized, P2 invokes CloseStream and
OpenStream and consequently the events ev_CloseStream and
ev_OpenStream occur. However, the occurrences of these
events violate P1 which expects ev_PlayVideo as the next
event. Hence, the enforcement mechanism of P1 prevents the
executions of CloseStream and OpenStream and MPlayer
keeps playing a media file while the video and the audio
streams are not synchronized.

As the complexity and the number of properties increase,
the probability that the enforcement mechanisms interfere with
each other also increases. Hence, the runtime enforcement tools
must provide means to detect the interferences and possibly
resolve them. Although several runtime enforcement tools have
been developed [2-7], to the best of our knowledge, the

interference of enforcement mechanisms is only elaborated by
[8,9] in the security domain. In [8,9], the developer must
manually detect the interferences, but a language to define the
rules for resolving the interferences is provided. However, as
the number of properties for complex software increase, we
believe that manual detection of the interferences becomes an
effort-consuming and error-prone activity for the developer.
Therefore, it is required to investigate on automatic detection
of the interferences.

III. DETECTING THE INTERFERENCES OF RUNTIME
ENFORCEMENT MECHANISMS

In this section, first, we provide a formal definition of an
enforcement mechanism and our enforcement operators, and
then we explain our rule set to detect interferences of
enforcement mechanisms.

A. Enforcement Mechanism and Operators
At a high-level of abstraction, we define the execution trace

of finite software as a sequence of states s0, s1, s2,…,sn in which
si (i < n) corresponds to the execution of a method in the
software; and sn depicts end of execution of the software.

A property P is a predicate over the states of the software in
formalism such as regular expression, temporal logic or
propositional logic. Runtime enforcement evaluates the
property P against the states’ changes of the executing software
and specifies the next state (i.e. the next method expected to be
executed) in the software execution according to results of the
verification. An enforcement mechanism E for the property P
is defined as the tuple (∑f, ∑o, f, O, δ) in which:

• ∑f is the finite set of method names over which the
predicate P is defined; hence, are verified by E.

• ∑o is the finite set of method names which are enforced
by E. At least all the members ∑f of must be enforced
by E; hence, ∑o is a superset of ∑f.

• f ∈ ∑f depicts the method which is about to be
executed.

• O is the finite set of enforcement operators. The
elements of this list is chosen from the following
possible operators:

− CONTINUE: allows the execution of f to be
carried out by the executing software. Hence, E
does not change the execution of the software.

− RETURN: prevents f to be executed.

− DISPATCH: prevents f to be executed, but
invokes k∈∑o instead.

− INVOKE: before executing f, it invokes k∈∑o;
and after the execution of k, it continues with the
execution of f.

− HALT: terminates the execution of the software.

• δ: f → O × ∑o is a function which verifies f against the
property P and enforces an action.

B. A Rule Set for Interference Detection
Assume that A and B are enforcement mechanisms for the

properties P1 and P2. We say that A interferes with B, if A
violates/validates the property P2 that is individually
satisfied/unsatisfied by the executing software. We reason
about the interference of A and B with the following rules:

• If ∑o
A ∩ ∑f

B =φ , since the set of enforced methods by
A is disjoint from the set of verified methods by B,
there is no interference between A and B.

• If ∑o
A ∩ ∑f

B = φ, since the set of enforced methods by
A is not disjoint from the set of verified methods by B,
A and B interfere if the following cases occur for the
method α ∈ φ:

− ∃ m ∈ ∑f
A , δA (m) → (INVOKE, α) or δA (m) →

(DISPATCH, α): Here before the execution of m,
the enforcement mechanism A calls the method α.
Assume that the software originally does not
contain an invocation to α; hence, B verifies α
which is invoked from inside A. In this case, A
causes P2 to be validated.

− ∃ m ∈ ∑f
A, δA (m) → (INVOKE, α) or δA (m) →

(DISPATCH, α), and δB (α) → (RETURN, α) or
∃ β ∈ ∑o

B, δB (α) → (DISPATCH, β): Here, A
calls the method α, but B prevents α to be
executed; causing P1 to be violated.

− δA (α) → (RETURN, α) or ∃ β ∈ ∑o
A, δA (α) →

(DISPATCH, β): Here, A prevents the method α
to be executed; and B does not get the chance to
verify α. In this case, we cannot precisely
determine if P2 is satisfied or unsatisfied by the
software.

• ∃ m ∈ ∑f
A, δA (m) → (HALT, nil): since the execution

of software is terminated by A, the enforcement of B
cannot also continue. In this case, we cannot precisely
conclude that the executing software satisfies or
unsatisfies P2.

IV. CONCLUSION AND FUTURE WORK
In this paper, we discussed the problem of interfering

enforcement mechanisms, which causes the overall behavior of
the software to be erroneous. As the number and the
complexity of properties to be enforced at runtime increases,
manual detection of the interferences becomes an error-prone
and effort-consuming task for the developers. Hence, we aim at
providing a framework for automatic detection of the
interferences. As the initial step to have such a framework, we
provide a formal definition of a runtime enforcement
mechanism and our enforcement operators; along with a rule
set to detect the interferences.

As the future work, we would like to develop a tool based
on our rule set for automatic detection of the interferences.
After detecting the interferences, we must also provide a means
to resolve the interferences. Therefore, we aim at proposing a
specification language that provides special constructs to

compose the enforcement mechanisms in a non-interfering
way.

ACKNOWLEDGEMENT
We acknowledge the feedback from the discussions with

our TRADER project partners from Embedded Systems
Institute [11].

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transaction
on dependable and secure computing, vol.1, 2004, pp. 11- 33.

[2] N. Delgado, A. Quiroz Gates, and S. Roach,”A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE transactions on software
engineering, vol.30. 2004.

[3] M. Kim, M.Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, ”Java-
MaC: a run-time assurance approach for Java programs,” Formal
methods in system design, vol. 24. Springer-Verlag, 2004.

[4] F. Chen, and G. Rosu, “MOP: an efficient and generic runtime
verification framework,” OOPSLA, Montreal, Quebec, Canada, 2007.

[5] K. Havelund, “Runtime verification of C programs,” TestCom/FATES.,
LNCS, vol. 5047, 2008.

[6] C. Allan, P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, O.
Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble, “Adding
trace matching with free variables to AspectJ,” OOPSLA, Oregon, USA,
2005.

[7] J. Ligatti , L. Bauer , and D. Walker, “Edit Automata: Enforcement
Mechanisms for Run-time Security Policies”, International Journal of
Information Security, vol. 4, No 1-2, pp. 2-16. Springer-Verlag, Feb
2005.

[8] L. Bauer, J. Ligatti, and D. Walker, “Composing Security Policies with
Polymer,”International Conference on Programming Language Design
and Implementation (PLDI), June 2005.

[9] L. Bauer, J. Ligatti, and D. Walker, “Types and Effects for Non-
interfering Program Monitors,” Theories and Systems, LNCS, vol. 2609,
pp. 154-171. Springer-Verlag, November 2003.

[10] MPLayer, http://www.mplayerhq.hu
[11] ESI, http://www.esi.nl

http://www.mplayerhq.hu
http://www.esi.nl

