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I. INTRODUCTION

Voice over Internet Protocol (VoIP) is a general term for
a family of transmission technologies for delivery of voice
communications over IP networks such as the Internet or
other packet-switched networks. However, it is challenged
in the field of quality of service (QoS), like latency, echo,
jitter, packet loss, power failure, lack of redundancy etc. The
incoming traffic is one of the factors responsible for the system
resource degradation and hence it is important to study the
traffic behavior so as to manipulate the traffic and make efforts
to improve the system.

We assume four stages of degradation. In the first stage
the calls operate comfortably. In the second stage, there is
some degradation, however the effects are not very disturbing
to the user. In the third stage, the effects become quite
prominent/visible, however the call is able to survive. But at
the fourth stage, survival of calls become impossible and the
system would require repair. We develop an analytical model
to analyze the survivability of such a system, with increasing
number of users, through a Markov Regenerative Process
(MRGP). The model is solved for steady state survivability
measures. A numerical example is presented to illustrate the
applicability of the model. With the help of this model,
strategies can be proposed to optimize the available resources,
and to regulate the call traffic in a suitable way.

II. MODEL

Consider a system which accepts atmost n calls. Consider-
ing the system degradation into four stages, we partition the
optimum number of calls supported at each stage as follows: h
calls at stage 2; g calls at stage 3 and the remaining n−g−h
at stage 1. Consider a system starting in the ‘robust state’,
stage 1, where all resources are available. As soon as the
(n−g−h)th call arrives, there is a degradation in the level of
resources and the system reaches stage 2. At this stage a check,
say C1, may be triggered, to examine whether the system
resources can support the ongoing and further incoming calls,
without affecting the calls quality. If it is not possible to
support the ongoing call, then rejuvenation (R) is triggered and
the system is restored to the last good state, i.e. the last call
at which all resources were available. If sufficient resources
are still available to support the ongoing call, then the call

continues; else if checking is still going on and more calls
pour in (since in a realistic situation we cannot control the
incoming of calls) then checking continues. But if upcoming
calls cause further degradation of resources, the system moves
to stage 3. Here also the system undergoes a similar check say
C2. When the nth call arrives and optimum level is reached, it
is assumed that the degradation caused in the resources cannot
support the system anymore and the system requires a repair.

This scenario is depicted via a 2-dimensional stochastic
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Fig. 1. State Transition Diagram

process: {(X(t), Y (t)) : t ≥ 0}, where X(t) is the number of
ongoing calls and Y (t) denotes the level of degradation the
system may be in, at time t. The state space of X is SX =
{0, 1, 2, . . . , n} and that of Y is SY = {1, 2, 3, C1, C2, R, 4}.
The state transition diagram for the same is given in Fig 1.

It is assumed that call inter-arrival and call completion
follow independent exponential distributions with rates λ1

and µ1, respectively. The time to invoke a check (C1 or
C2) follows non exponential distribution denoted by G. Note
that it is assumed that while checking is going on, a call
can arrive, but checking still continues. This is depicted in
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the diagram via the transition (shown by a dotted arc in the
diagram) (i, Ck) to (j, Ck), i ≥ n − g − h, j = i + 1, i − 1
and k = 1, 2. However if checking results indicate that the
system resources are insufficient, then rejuvenation is triggered
with an exponentially distributed time with parameter λCR.
Further time for rejuvenation is exponential distribution with
parameter λR. However, after the check, the system may return
to the ongoing call with exponentially distributed time having
parameter λCS . As the nth call arrives, there is a complete
failure and repair starts immediately taking an exponentially
distributed time with parameter λ0.
Hence, of all the transitions, only

(i) (i, Cj) to (i, j + 1), i ≥ n− g − h, j = 1, 2
(ii) (i, Cj) to (i, R), i ≥ n− g − h, j = 1, 2
(iii) (i, R) to (n− g − h− 1, 1)
(iv) (n, 4) to (0, 1)

are the regeneration time epochs. The system therefore can be
modeled using MRGP. Mathematically, if T denotes the set of
time epochs of all possible transitions, TR as the set of all re-
generation time epochs, (TR ⊆ T ), ZT = {Ztn

= (Xtn
, Ytn

) :
tnεT}, the state of system at various time epochs or transition
time, then {(Ztn

, tn) : tnεT} constitutes a MRGP with
{(Ztnk

, tnk
) : tnk

εTR, nkεN} and {Ztnk
: tnk

εTR, nkεN}
being the underlying SMP and DTMC, respectively. We can
determine the steady state probabilities of MRGP using the
software tool SHARPE [2].

III. NUMERICAL RESULTS AND CONCLUSIONS

For numerical illustration of the model, we have assumed
the following values of the parameters mentioned above:
n = 10; g = 2; h = 4, n − g − h = 4. The transition rates
are taken as : λ1 = 5, µ1 = 3, Hyperexponential distribution
H = HE(5, 4, 4), λCS = 3, λCR = 1.5, λR = 2, λ0 = 3.
Evaluating this model in SHARPE we get the following state
probabilities:

State Probability State Probability
(0,1) 1.58132775e-001 (5,C1) 2.40502725e-002
(1,1) 2.63533209e-001 (6,C1) 6.44917189e-003
(2,1) 2.19600300e-001 (7,C1) 1.47950361e-003
(3,1) 1.21993029e-001 (8,C2) 2.96399902e-004
(4,2) 3.75111247e-002 (9,C2) 5.25335838e-005
(5,2) 9.94427136e-003 (4,R) 5.56377902e-002
(6,2) 2.30038707e-003 (5,R) 1.80377044e-002
(7,2) 4.70062793e-004 (6,R) 4.83687892e-003
(8,3) 8.52745670e-005 (7,R) 1.10962771e-003
(9,3) 1.28489127e-005 (8,R) 2.22299926e-004
(10,4) 2.14148544e-005 (9,R) 3.94001878e-005
(4,C1) 7.41837202e-002

• Since {(0, 1), . . . , (9, 3), (10, 4), (4, C1), . . . , (9, C2)} are
up states, the system availability is given by: Availabil-
ity=π01 + π11 + · · ·+ π93 + π4C1 + . . . π9C2

= P [((0, 1), . . . , (9, 3), (10, 4), (4, C1), . . . , (9, C2))]
= 0.9201
where πij is the steady state probability of state (i, j)

• Call Dropping Probability: (CDP) Probability that some
ongoing calls are dropped. In the model this happens
when the system reaches the rejuvenation state.
= P [(4, R), . . . , (9, R)] = 0.0799

• Call Blocking Probability: (CBP) The probability of
the system, when it cannot accept more new calls. This
happens when the system reaches the failure state =
2.14148544e-005.

Further we also see the relation between changing the
parameters of Hyperexponential distribution and λCR which
is depicted in the following table.

HE(µ1, µ2, ρ) λCR Availability CBP CDP
HE(5, 4, 4) 1.5 .9201 2.14148e-005 .0799
HE(5, 4, 4) 1 .9358 2.69120e-005 .0642
HE(5, 4, 4) 0.5 .9596 3.54193e-005 .0404
HE(4, 4, 4) 1.5 .9554 4.16688e-005 .0446
HE(4, 4, 4) 1 .9652 4.65857e-005 .0348
HE(4, 4, 4) 0.5 .9790 5.35861e-005 .0209

That is we observe that with the increase in the frequency of
rejuvenation, the availability of the system increases, but the
call dropping probability also increases. However the system
reaches the failure rate less frequently, for any HE(µ1, µ2, ρ).

Similarly, we observe from the following table, for
λCR = 1:
HE(µ1, µ2, ρ) λR Availability CBP CDP
HE(4, 4, 4) 3 .9765 4.71318e-005 0.0235
HE(4, 4, 4) 4 .9823 4.74098e-005 0.0177

As time taken to rejuvenation increases, the system avail-
ability increases.
The results can be further used to calculate various sur-
vivability measures such as if (n, 4) is an absorbing state,
then the system eventually fails with the call arrival and
degrading resources. Hence the reliability of the system can
be calculated. The measures can also be counter checked via
simulation.
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