
Ajit Ashok Shenvi
Philips - Bangalore
Sep 23, 2009

Reliability : Software Engineering Perspective
- ISSRE 2009

Copyright ISSRE 2009

2CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• Software Reliability is an important factor in System Reliability as the
contribution of software in products is constantly increasing

• Software Reliability is the probability of failure-free software operation in
a specified environment for a specified period of time (or natural units)

• NO ONE uniform theory of software reliability yet. NO ONE widely
accepted method of estimating or predicting software reliability yet

• Software by itself does not have a “Constant Failure rate (random
failures)”, hence defining MTBF for only software is tricky

• The typical bath-tub curve for software would look something like this :

Background

3CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• Theme - Building in Software Reliability during the development life cycle

• Case study of DVD-Hard disk recorder product –
– definition of Reliability as “Critical to Quality (CTQ)” in terms of

Robustness and Interoperability aspects
– flow down of the CTQs into the lower parameters
– design-in to achieve the desired reliability from software

• Recommendation of a framework for ensuring and tracking software
reliability along the software development life-cycle
– built around the three dimensions of Fault-Prevention, Fault-

Tolerance and Fault-Detection
– process structure of CMMI & Orthogonal defect classification,

augmented with FMEA and principles of graceful exit mechanisms,
supplemented with “Pondering maturity index” for reliability growth.

Software Reliability – Contents of this paper

4CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Software Reliability – DVD-Hard disk recorder

Robustness
Interoperability

Reliability

• For this product, Reliability was defined on the following 2 axes:
– Robustness (How often does it hang or crash in normal user

scenarios)
– Interoperability (Does it work seamlessly with other devices

especially Digital cameras via USB port).

5CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• The CTQ of Robustness was quantified as “Number of Hangs/crashes”
with target as 0

– in normal scenarios with typical use cases
– in certain stressed situations with “concurrent” use cases

Robustness = f (Null pointers, Mem leaks, CPU load, Exceptions, Coding errors)

Robustness
(Crashes & Hangs)

Null Pointers

Memory Leaks
CPU Loading

Exceptions /
Error handling

Coding errors
(default switch cases,
global variables etc)

The lower level factors or (Xs) that could impact the CTQ (Y) Robustness

Targets were set for each of the above parameters.

Software Reliability – CTQ-1 : Robustness

6CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• A small Script was developed to find all “Null pointers” in the code
stack. These were then eliminated

• Stringent Limits set for memory allocation of subsystems. This was
tracked at every release to ensure that all subsystems are within
budget and that there is no overlap of memory space. (Subsystems come
from different project teams and external suppliers)

• A script was made to check for implementation of “default conditions”
for “switch case” statements

• Static analyzer tools such QAC was run and the target set was 85%
code coverage. Errors and warnings were closed.

Software Reliability – CTQ-1 : Robustness

7CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• From Embedded programming experience, it is known that CPU load >
65% makes the system unstable and unpredictable

• Different combinations of scenario’s (stressed conditions) were chosen
and CPU load tracked using a tool called CodePerf for every release.

Software Reliability – CTQ-1 : Robustness

8CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• FMEA was done to identify failure modes leading to exceptional
conditions for new features.

– Graceful exits and error recovery mechanisms were implemented. For
e.g. exit with an error message rather than be in a loop when a non-
standard USB device is connected to the recorder, error recovery
when a non standard format disc is played on the device

– A “concurrency” matrix (shown below) was made that depicted levels
of parallel use cases that could be executed by the user. The initial
requirements were simplified so that the crash and hang conditions
could be reduced.

Software Reliability – CTQ-1 : Robustness

9CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• An operational profile of typical user scenarios created and the
software run on product with different profiles in a continuous loop for
4-days at elevated temperatures (Duration test)

• The results verified every alternate weeks on every build.

Software Reliability - CTQ-1 : Robustness

10CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• Finally the CTQ of robustness – hangs and crashes were measured on
weekly basis to verify the results.

FMEA, Null pointer removal, Default
condition checks, QAC, Error

recovery, memory tracking, Duration
tests from pre-integration, CPU load

tracking, border cases etc

Assert related
crashes

Software Reliability - CTQ-1 : Robustness

11CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

other USB devicesUSB storage

USB Cameras

Primary use case : Cameras Primary use case : Cameras Narrow selection

Digital camera : Makes Digital camera : Makes Sample space

CTQ : Interoperability (90%) CTQ : Interoperability (90%)

Prioritization

Brainstorming,
Benchmarking

Software Reliability - CTQ-2 : Interoperability

• Large number of USB devices
• Narrowed down the selection
to primary use case of cameras

• Further filtered to specific make
of cameras to define this CTQ

• Target of 90% was set

12CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Factors that impact CTQ

Interoperability improved
from 68 % to 90 %

Design & implementation
with CTQ as focus

Robust design, FMEA
“desensitizing noise”- Error correction

Measurements at design /
implementation phase

Early Plug Fest revealed
problems With Sony Cameras :

Default mode (MSD, PTP)

Plug-fest

Software Reliability – CTQ-2 : Interoperability

13CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Software Reliability Framework - Elements

Exception
Handling

Graceful
Exits

Maturity
growthOperational

Profiles

Defect prevention
with Orthogonal

Defect
Classification

(ODC)
Process

Rigor
FMEA

13

Software
Reliability

Stress
Testing

Fault
Prevention

Fault
Tolerance

Fault
Detection

• Software Reliability framework can be built around the 3 pillars
- Fault Prevention, Fault Tolerance and Fault Detection.

14CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Means to ensure Reliability

14

• Operational
profiles testing

• Stress tests and
accelerated tests

• Reliability growth
with Pondering
maturity Index

• FMEA
• Exception

Handling
• Graceful exits
• Graceful

degradation

• Process Rigor (CMMI)
– Requirements

Management with CTQs
defined around Voice of
Customer

– Architecture, design with
CTQs as the basis

– Strict enforcement of
Coding guidelines

– Bidirectional Tracebility
– Peer and expert Reviews

• ODC based Defect prevention
• FMEA and Mistake proofing

Fault DetectionFault ToleranceFault Prevention

Progressive

15CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Means to ensure Reliability – Fault Prevention
Defect Prevention Structure built around ODC (Orthogonal Defect Classification).

15

16CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Means to ensure Reliability – Prevention /Tolerance

• FMEA is an excellent tool to build-in fault tolerance and
fault prevention mechanisms in systems based on CTQs
and use cases.

16

The RPN – Risk priority number is a
good indicator of reliability – Higher

the RPN, lower the reliability

17CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

Means to ensure Reliability – Fault Detection

17

This PMI can be
used to track
Reliability growth
during the
development
phase and a
decision point
during release

• “Pondering Maturity
Index (PMI)” is a number
computed based on
Severity of bugs and
their evolution

• Weightage is allocated
for each combination to
calculate overall PMI

18CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• Reliability in simple terms implies “failure free operation”
• Definition of a software failure will vary depending on the kind of product
• It is important to define what “software reliability” means for a particular

product based on Voice of the customer
• Using this as CTQ, it can be flowed down into the architecture and

design
• Reliability can be ensured by : Fault prevention, Fault tolerance and

Fault detection techniques built into the software engineering framework
• Some leading indicators than can help estimate “Reliability”

– Risk priority number from FMEA
– PMI value in conjunction with Test coverage
– Pre-release defect density
– Mean-time between Crashes and Hangs
– Process compliance scores from CMMI

Software Reliability – Summary

19CONFIDENTIAL Philips - Bangalore, Sep 23, 2009, Reliability : Software Engineering Perspective

• Jiantao Pan. 1999. Software Reliability. Carnegie Mellon
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability

• Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D.
S., Ray, B. K. & Wong, M., Orthogonal Defect Classification: Concept
for In-Process Measurement, IEEE. Transaction on Software
Engineering, Vol. 18 No. 11, Nov-92
http://www.chillarege.com/odc/articles/odcconcept/odc.html

• CMMI® for development v1.2. August 2006 Reference : CMU/SEI-
2006-R-008 ESC-R-2006-008CMMI Product team
http://www.sei.cmu.edu/reports/06tr008.pdf

• Pondering Maturity Index : SPEED, Software Creation Process – Philips
Consumer Electronics, UAT-0482-3301

References

