
1

Verification of Safety-Critical Software Requirement
Based on Petri-Net Model Checking

Ning Ma, Xiaohong Bao, Zhen Li and Haifeng Li
Department of Engineering System and Engineering, BeiHang University, China

maning@dse.buaa.edu.cn

Abstract

Formal modeling and software requirement

verification could improve dependability of safety-
critical software. Model checking technology is widely
recognized by industry. It has the advantage of a flexible
input language, but its capabilities of debugging,
graphical modeling and interpretation are limited. Petri
net is a strictly defined formal modeling approach. In
this paper, the semantics of Petri net can be extended
and mapped to adapt to the modeling and verification of
software requirements.

1. Introduction

Correct Requirement is essential for the development

of safety-critical software [1]. Ref. [2][3]pointed out that
the formal methods are beneficial to the development.

At present, the language editor of model checking
tools is too weak for debugging and inspection, which
makes troubles in editing requirements and specifications
of inspections. Based on the current study on model
checking 0, the semantics of Petri net can be extended in
5 ways illustrated in section 2.

2. Expansion of Petri Net

To meet requirements of complicated and dynamic

behaviors of software, the definition of Petri net is
extended as follows.

2.1 Zero-Weight Function

In the Petri net structure, transition of 1 as the default
weight function has the meaning of delivering resources.

For software system, there are a large number of
judgments and loop jump in the structure of programming
language, which needs to be verified and eventually
realized. The default weight function for a reduction in
consumption does not reflect the judgments and recycling

program semantics, meanwhile it causes the difference
between the numerical value of judge and the value of
cycle. Therefore the default value of weight function is
defined as zero.

2.2‘Non’ Dashed Line

In traditional Petri net, migration can be triggered
only if the relocation of token is available. However in
practice, a lot of migrations triggered are based on the
non-true state. But there is no semantics definition or
graphical representation for failure migration. Therefore,
we use to represent ‘non’ triggered location and
‘non’ migration.

2.3 Threshold Value Migration

Threshold value is critical to system modeling. It is
easier to construct migration with threshold as threshold
value, accumulator and counter, etc, due to changed
default value and added ‘non’ dashed.

2.4 Enumerated and Numeric Place

In Petri net, a place corresponds to a minimal state
variable of system. Enumeration type takes the name of
state as location mark, and black spots means it is
activated. Numeric value identifies the place is located in
parentheses after the initial marked, in the library of the
right of the sequence indicated by the value scope.

2.5 Value-Assigned Transition

Traditional Petri token had characterized the state of
the system changes in software systems often use of state
variables to represent the numerical assignment. In many
cases, places are required for direct re-assignment. Arrow
with the icon expresses a mandatory assignment where N
is a specific assignment number.

2.6 Extended Definition

EPN=(P,T,F,W,M)=(EN,W,M)

Copyright ISSRE 2009

mailto:maning@dse.buaa.edu.cn

2

In which, EN is extended as follows:
Place P={PID,Pkind,Pvalue}, contains ids, types

and values, in which, ,Pkind ∈{0,1}，0 is in Boolean
state, and 1 is in numeric.

Pvalue ={My,Vmin,Vmax} ， in which, My is
current value, equals to finite number K，My is either T
or F. Vmax and Vmin are the upper and lower limit of
the Place, not considered when it is Boolean.

Transition: T={TID,Tkind}, in which, Tkind ∈
{TN,TS}, TN is normal transition, TS is Value-
Assigned Transition

),(),(PTTPF  ,is a set of arcs
ZFW : , Weight in token transition TN or value

assigned in TS.
Transition conditions
t ∈ T, ’t’=’t ∪ t’,is called extension of t. The

conditions when t happens is as follows:

maxmin

''

..),()(..

:.,),()(:

vppptWpMvpp

TtttptpWpMtp

valuevalue

Nkind




（1）

maxmin

''

..),(..

:.,),()(:

vppptWvpp

TtttptpWpMtp

valuevalue

Skind




（2）

 Transition results:



















。)()(

),,(

);()(

),,()(

)(

..

..
'

S

N

Ttttp

ptW

Ttttp

ptWpM

pM

3. Petri Net Mapped to Nusmv

3.1 Nusmv Program Structure

NuSMV is a symbolic model checking tool. It can
be applied to fields of industrial design verification,
custom verification tools and formal verification of the
test platform.

◇ Declare state variables, including Boolean,
enumeration and integer.

◇To Initialize and change state variables by:
ASSIGN
init(b0) := 0; next(b0) := !b0;
◇ Operator expression: Arithmetic operators,

Comparison operators, logical operators and set
operators

◇Conditional expression:
case
e1 : e2;
e3 : e4;
...

Esac

3.2 Examples

Take Timer_4s counter as an example. The initial
state is 0. The accumulation and reset of the counter are
monitored by Timer_4s_state. And they change when
threshold value changes. As shown in Fig 1, the
semantics can be clearly mapped to the codes of NuSMV:

init(Timer_4s) := 0; next(Timer_4s) := case
Timer_4s_state= Start & Timer_4s < 40 : Timer_4s

+ 1;
next(Timer_4s_state) = Clear : 0;
next(Timer_4s_state) = Restart & Timer_4s < 40 :

Timer_4s + 1;
next(Timer_4s_state) = End : 0;
1 : Timer_4s; esac;

Figure 1 The comparison of fitness with Ohba

4. Requirement Verification

The path of counter-examples by NuSMV can be
used to improve the design to requirement and consists
of an integrated state-transform process contributed to
the test case generation.

References

[1] Gregory Zoughbi. A UML profile for developing
airworthiness-complaint (RTCA DO-178B) safety-critical
software[D]. Carleton University, Ottawa, Canada. 2006.
[2] ‘Trusted Software Basic Research’ 2007 Annual Program

Guide: http://www.nsfc.gov.cn/nsfc/fj.
[3] Liu Ke, Shan Guangzhi, He Jifeng, Zhang Zhaotian, Qin
Yuwen. ‘Trusted Software Basic Research’ Summary of Major
Research Program [J]. Science Foundation in China，2008，
III：145-151.
[4] Cicirelli, F., Furfaro, A, Nigro, L. An approach to protocol
modeling and validation. 39th Annual Simulation Symposium,
2-6 April 2006 Page(s):8 pp.

http://www.nsfc.gov.cn/nsfc/fj

