
Automated Stress Testing of Windows Mobile GUI Applications

Nizam Abdallah, Sita Ramakrishnan
Faculty of Information Technology

Monash University

Melbourne, Australia

e-mail: {nizam.abdallah, sita.ramakrishnan}@infotech.monash.edu.au

Abstract— Mobile devices are now a common tool for personal,

business, entertainment and communication use. The increase

in usage of Smartphone devices has led to the increase in

development of mobile software applications. The testing of

mobile applications is made difficult as there are many

different types of devices available that may be targeted by the

same application. In addition to this, mobile devices are a

resource constrained device, with less memory and processing

power than the desktop PC. However, even with these

constrained resources, performance and robustness are still an

important factor to consider when developing mobile software

applications. This research paper discusses the current status

and proposed work of a research project involving the use of

artificial intelligence, fuzz-testing and automated GUI testing

techniques for Windows Mobile devices. It describes the

current development status of an automated GUI stress testing

tool, Torqueo. Then, it details the various types of scenarios

for which this tool has been utilized and also outlines the

advantages and limitations of this research study.

Keywords-Windows Mobile; GUI Applications; .NET

Compact Framework; Automated Testing; Stress Testing

I. INTRODUCTION

More and more people are relying on their mobile
devices, not only for voice and SMS communications, but
also for, business, email, scheduling, social networking,
playing games and listening to music. The power of these
mobile devices has increased over the years and so too has
the software that is available for these devices. Automated
GUI testing has proven to be a valuable part of the software
development life-cycle. Previous work has demonstrated
that if implemented correctly, automated GUI testing is an
effective method for improving the quality of software and
makes the software testing process more efficient and
effective [5]. This study looks at the development of a
Windows Mobile automated GUI stress testing tool,
Torqueo, which attempts to bring the benefits of test
automation to mobile software development.

II. BACKGROUND

The popularity of mobile devices has increased
significantly over the last few years. According to the CIA
World Fact book in 2005 the total number of cellular
subscribers worldwide was 2,168,433,600 [2]. Currently
there are a large number of mobile device manufacturers
including but not limited to Nokia, Palm, Sony, Motorola,

RIM, Samsung, Apple and HTC. The devices support one of
the many mobile platforms including Symbian, PalmOS,
Windows Mobile, Windows CE, Android, Blackberry, Apple
and Linux.

This increase in popularity has led to an increase in the
number of mobile applications developed for these devices.
As a result the software developed for mobile devices needs
to be of high quality, not only in terms of functionality but
also in terms of reliability, robustness and stability.
Applications need to be able to operate for long hours and
not interfere with other device functions, or degrade
performance of the device.

Microsoft’s Windows Mobile platform was developed to
run on various hardware including mobile phones, PDAs and
other electronic devices such as GPS navigation systems and
portable entertainment units. Windows mobile is currently
released in three editions, including:

• Windows Mobile Standard
• Windows Mobile Professional
• Windows Mobile Classic

All of Microsoft’s Windows Mobile platforms are built

on Microsoft Windows CE Operating System.
Traditionally automated GUI testing tools allow testers

and developers to record user actions into scripts and play
these scripts back performing the exact same actions as those
that were recorded [5]. These recorded scripts work well as
long as the GUI does not change. If the GUI or GUI logic is
modified, the scripts will fail and generally need to be
recorded again, leading to high maintenance costs [5].
Recent research has demonstrated methods for optimizing
automated test case selection based on artificial intelligence
techniques, using planning [7], [8], [9] and neural networks
[13]. Memon, Pollack and Soffa [8], present a GUI test case
selection technique using planning. In this planning
approach, a GUI application is analyzed and a set of initial
and goal states are created, then using this state information,
the use of a hierarchical planner is employed to create test
cases. Ye, Feng, Lin and Zhu [13], have also researched the
area of Artificial Neural Networks for test case selection. In
their research, a trained Neural Network is used to minimize
the number of GUI test cases selected for execution. The test
cases selected are those that have the most chance of finding
a defect within the application under test. While these
research projects were successful, they were aimed at GUI
applications running on desktop personal computers. This

Copyright ISSRE 2009

approach may result in a great performance impact if
implemented on a mobile device. Furthermore, Automation
frameworks for mobile applications have also been
researched [1], [11] but these involved the user to create tests
for each application, then to execute these tests on the target
device, leading to the same problem mentioned above, that if
the GUI or GUI logic is modified the tests will need to be re-
created.

This research study includes the development of an
automation framework for stress testing Windows Mobile
GUI applications. The aim of this tool is to automatically
generate tests for .NET Compact Framework Applications
and automatically execute these tests. Similar stress testing
tools have already been developed including Microsoft’s
Hopper Test Tool. The Microsoft Developer Network
(MSDN) documentation [10], describes “Hopper is a
software test tool that simulates input stress on Windows
Mobile powered devices. Hopper will stress all applications
that are available through the menu system by rapidly
sending keystrokes and screen taps in a random fashion. By
sending a large number of user inputs very rapidly, Hopper
can quickly isolate troublesome scenarios and find bugs in
your applications”. While Hopper can find many issues,
generally these issues are hard to reproduce as the inputs
performed by Hopper are random and not recorded.
However, the MSDN documentation [10], explains that
“Sometimes, bugs found by Hopper are very difficult to find
and fix, but their value should not be underestimated. Hopper
will help you find system and application scenarios that you
may not have thought of.” Microsoft’s Hopper can be
customized. Microsoft explains that the tester or developer
will need to make changes to the FocusApp source code,
which is included as part of the Hopper tool. FocusApp
allows the tester to specify the name of the executable for the
application under test as well as a sleep timeout by
modifying the FocusApp source code. Hopper will then
check to ensure that the application under test is in focus.
The frequency of this check depends of the value of the sleep
timeout. A shorter timeout value will result in a more
frequent check. This is an important factor to consider as the
application under test may lose focus due to the random
nature of the input provided by Hopper.

Motorola have also researched this area of automated
stress testing and have developed iHopper [3] and iRobot [4]
which perform similar functions to Microsoft’s Hopper test
tool. However, Motorola have added the ability to record
and playback the actions performed. Furthermore in
Motorola’s iHopper the probability of certain input varies
depending on the key-press to be simulated [3]. The
limitations of iHopper is that it is designed to run only on the
iDEN

TM
 UIS phone, while the iRobot tool is will only run on

the iDEN
TM

 Smartphone.

III. PROPOSED WORK

The automated GUI stress test tool developed in this
research study is named Torqueo. Torqueo is the Latin
translation for test, twist, torture or spin. Currently, Torqueo
includes not only the functionality similar to Microsoft’s
Hopper, Motorola’s iHopper and iRobot, but also the ability

to run on any Windows Mobile device running the .NET
Compact Framework. The tool will also be extended to
include GUI object recognition and automated test case
generation and execution using artificial intelligence
techniques.

The main aims of this research project are:

•Run on any Windows Mobile device with the .NET
Compact Framework installed

•Minimize the performance impact of running the tests
on a mobile device

•Minimize the amount of coding required to create tests

•Ability to automatically map GUI objects in the
application under test

•Automatically generate tests cases

•Automatically execute test cases

Basic Fuzzing techniques are currently being used in

Torqueo. Sutton, Greene and Amini [12], describe Fuzzing
“as a method for discovering faults in software by providing
unexpected input and monitoring for exceptions.” Initially,
random input is being generated in the form of stylus taps
and button presses; however this randomness will be refined
once GUI object recognition is added to Torqueo.

GUI object recognition is being added to Torqueo to
allow the tool to recognize .NET Compact Framework GUI
controls using .NET Reflection. .NET Reflection is a feature
in both the .NET Framework and .NET Compact
Framework. Gilani et al [6] describe that “.NET reflection
allows an application to search through and examine
assembly metadata programmatically at runtime. Once the
application has used reflection and metadata it can instantiate
classes, invoke class methods and modify their properties”.
Once Torqueo can recognize these GUI objects via .NET
Reflection, tests can be automatically generated for each type
of GUI object and execution can be performed using
artificial intelligence techniques. Various artificial
intelligence techniques are being considered, and previous
works [7], [8], [9], and [13] have already demonstrated a
successful approach to using intelligence methods in
automated GUI testing, including, test case generation, test
case selection and test execution.

Furthermore, development is underway to make Torqueo
a lightweight agent running on a device connected to a
desktop PC. Not only will this enable the agent to run on
multiple Windows Mobile devices simultaneously, it will
also allow for tests to be generated, executed and results
reported centrally. Furthermore, this agent based architecture
will also remove the overhead and performance impact on
the device itself.

IV. TORQUEO

Currently, Torqueo is a stand-alone device based

automated GUI stress testing tool that can not only generate

random input in the form of stylus taps and hardware button

presses but can also can also execute pre-recorded XML test

scripts and perform common device functions such as file

IO, voice and data communications and log performance

status. A list of current features is shown in Table 1 below.

Table 1. Torqueo Features

Feature Description

Record and playback Play back the pre-recorded actions

Random Input Generate random stylus and key press events

Scripted Input Execute XML based tests

Phone functionality Make phone calls and send SMS

Data connections Initiate a data connection/browse internet

Database IO Create/Read/Write to SQL Server CE database

File IO Read/Write to a file

Performance tests Log CPU and Memory Usage

The only requirements for Torqueo are that the

.NET Compact Framework 2.0 or later needs to be installed

on the device. To make use of the database functions SQL

Server CE 3.0 also needs to be installed on the device.

Table 2 shows the different devices on which Torqueo has

been used.

Table 2. Tested Platforms

Torqueo can perform tests in 3 ways:

1. Generate random input

2. Execute scripted XML tests

3. Perform both random and scripted tests

Fig. 1 below shows the main Torqueo screen, where the

test analyst can select the application to be tested, and the

types of tests to be executed.

Figure 1. Torqueo Main Screen

While Torqueo can generate random input,

constraints can be applied to the random input data

generated. Fig. 2 shows how the test analyst can configure

screen co-ordinates for the random stylus taps, also exclude

certain hardware buttons from being simulated if required

and finally the duration of the random test can be specified

along with the interval between each event.

Figure 2. Torqueo Random Test Configuration

In addition to randomly generated input, the test

analyst can create XML test scripts that perform pre-

determined actions. Fig. 3 shows a sample XML test script

while Table 3 shows the list of actions currently supported

by the XML script.

Manufacturer Device Model Microsoft Platform

Dell X50 Pocket PC 2003

Casio E-115 Pocket PC 2000

Motorola MC35 Windows Mobile 5.0 Professional

Samsung i320N Windows Mobile 5.0 Smartphone

Dopod s301 Windows Mobile 5.0 Smartphone

HP iPaq rx4500 Windows Mobile 5.0 Classic

iCOP eBox-2300 Windows CE 6.0

Motorola MC75 Windows Mobile 6.1 Professional

Motorola MC70 Windows Mobile 5.0 Professional

Motorola VC6090 Windows Mobile 6.1 Professional

Intermec 761 Pocket PC 2003

Intermec CN3 Windows Mobile 6.1 Professional

Motorola Q9 Windows Mobile 6.0 Smartphone

Figure 3. XML Test Script

Table 3. Scripted Actions

Action Description

clickMouse Simulates a stylus tap in

the specified co-ordinates

clickAndHoldMouse Simulates a right click

sleep Pause tests for a specified

duration

pressKey Simulates a key press

pressKeyCode Simulates a key press using

a HEX code

captureScreen Captures the current screen

scanbarcode Invoke the barcode scanner

if present on the device

batchInput Reads an input file and

sequentially inputs each row

as separate data

warmboot Resets the device

padTXTfile Creates a text file to a

specified size

padXMLfile Creates an XML file to a

specified size

writeToDatabase Writes data to a database

makePhoneCall Makes a phone call to a

specified number

sendSMS Sends an SMS to a specified

number

connectToWeb Opens the Web browser and

navigates to a specified URL

Torqueo does not know or maintain the state of the

application under test. It simply performs input as specified

in the test XML script. All actions performed by the tool

(both randomly generated and scripted input) are logged in a

text file as shown in Fig. 4 and Fig. 5. This log file can

converted to an XML script and executed again if any errors

were found during a random test.

Figure 4. Log file generated at the end of each test

Figure 5. Torqueo Log Screen

Torqueo has been successfully used to perform the

following types of tests:

1. Reproduce defects that appeared to be random in

nature. Once they were reproduced the log could

be analysed for what actions were performed

before the defect occurred.

2. Soak testing of applications, by performing

scripted tests for up to 3 consecutive days.

3. Security Stress Testing an Application in Kiosk

mode

V. ADVANTAGES AND LIMITATIONS

Torqueo has a few advantages over previous work. The
main advantages are that it runs solely on the device and
does not need to be connected to a PC and it runs on any
device that has the .NET Compact Framework v2.0 installed.
This allows for testing of many applications on many
different devices with different form factors. Also, the same
XML test can be played on many different devices.

There are also several limitations currently present in
Torqueo including the inability to maintain state of what
application is currently running on the device and what form
is currently in focus. Also, while there is functionality to
simulate stylus input, there is no functionality to properly
record the stylus input as no support for system level input
hooks are provided for recording stylus taps in the Windows
CE SDK. The way around this problem is to develop a
screen driver that supports stylus capture functionality or to
capture the mouse events on a clear (opaque) window form
and pass these events to the mouseClick function within
Torqueo. Another limitation is that Torqueo relies on .NET
Compact Framework being installed on the device.
However, this will not be a problem for newer devices as the
.NET Compact Framework is pre-installed in the ROM on
all Windows Mobile 6.1 devices and above.

<testsuite name="PocketWord">

 <test name="Hello World">

 <clickMouse x="20" y="305"/>

 <sleep time="5000"/>

 <pressKey keys ="Hello World" />

 <sleep time="3000"/>

 <captureScreen

filename="\screenshots\Today.bmp"/>

 <clickMouse x="225" y="15"/>

 </test>

</testsuite>

Starting application: \windows\pword.exe with

arguments:

Test: 1

Starting Test: Hello World

Stylus Tap at POS: 20,305

Key Press: Hello World

Stylus Tap at POS: 225,15

Stylus Tap at POS: 225,15

Stylus Tap at POS: 225,15

Stylus Tap at POS: 225,15

Completed Test: Hello World

All Tests Completed

VI. CONCLUSION

In its current state, Torqueo is capable of performing
automated stress tests to determine the robustness of
Windows Mobile applications running on various device
types including PDAs, Mobile Phones, MP3 Players and
Embedded PCs. However, work is currently continuing on
Torqueo not only to overcome the limitations mentioned
above but also to enhance the way it performs current tasks.
Torqueo is currently an intrusive tool that runs on the same
device as the application under test. While there are
advantages to running the test tool on the device, running
multiple tests simultaneously on different devices requires
test analysts to perform analysis on multiple individual
log/results files. Once Torqueo is changed to a lightweight
agent running on a device connected to a desktop PC,
Torqueo will allow tests be executed, test results to be
collected and analyzed from a central location. In addition to
this agent based architecture, it is planned that .NET
Reflection will be used to map GUI objects, and artificial
intelligence techniques will be used to generate and execute
tests.

Adding this functionality into Torqueo, will allow testers
and developers to perform automated GUI stress testing
throughout development and will ultimately result in stable,
robust and high quality mobile applications

REFERENCES

[1] J. Bo, L. Xiang, and G. Xiaopeng, "MobileTest: A Tool Supporting
Automatic Black Box Test for Software on Smart Mobile Devices."
Second International Workshop on Automation of Software Test,
2007. Minneapolis, MN: IEEE Press, 2009, doi: 10.1109/AST.2007.9

[2] Central Intelligence Agency. Country Comparison :: Telephones -
mobile cellular. 2005. https://www.cia.gov/library/publications/the-
world-factbook/geos/xx.html (accessed 08 15, 2009).

[3] W. H. Chong, "iDEN Phones Automated Stress Testing." World
Academy of Science, Engineering and Technology 23, 2006: pp. 12-
16.

[4] W. H. Chong, "iDEN Smartphone Embedded Software Testing."
Proceeding of the Fourth International Conference on Information
Technology, 2007. ITNG '07. Las Vegas, Nevada, USA: IEEE Press,
2007, pp. 872-873, doi: 10.1109/ITNG.2007.103

[5] M. Fewster and D. Graham, Software Test Automation. Harlow,
Great Britain: Pearson Education Limited, 1999.

[6] S. F. Gilani, M. Gillespie, J. Hart, B. K. Mathew, and A. Olsen, .NET
Reflection Handbook. Birmingham, United Kingdom: Wrox Press,
2002.

[7] A. M. Memon, "Using Tasks to Automate Regression Testing of
GUIs." Proceedings of The IASTED International Conference on
ARTIFICIAL INTELLIGENCE AND APPLICATIONS . Innsbruck,
Austria: IASTED, 2004.

[8] A. M. Memon, M. E. Pollack, and M. L. Soffa, "A Planning-Based
Approach to GUI Testing." Proceedings of The 13th International
Software/Internet Quality Week. San Francisco, California, 2000.

[9] A. M. Memon, M. E. Pollack, and M. L. Soffa, "Plan Generation for
GUI Testing." Proceedings of The Fifth International Conference on
Artificial Intelligence Planning and Scheduling. Breckenridge,
Colorado: AAAI Press, 2000, pp. 226-235.

[10] Microsoft. Hopper Test Tool. 08 28, 2008.
http://msdn.microsoft.com/en-us/library/bb158517.aspx (accessed 08
15, 2009).

[11] S. She, S. Sivapalan, and I. Warren, "Hermes: A Tool for Testing
Mobile Device Applications." Australian Software Engineering
Conference 2009. Gold Coast, QLD, Australia: IEEE Press, 2009, pp.
121 – 130, doi: 10.1109/ASWEC.2009.17

[12] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force
Vulnerability Discovery. New Jersey, United States: Pearson
Education, 2007.

[13] M. Ye, B, Feng, Y. Lin, and L. Zhu, "Neural Networks Based Test
Cases Selection Strategy for GUI Testing." Proceedings of the 6th
World Congress on Intelligent Control and Automation. Dailian,
China: IEEE Press, 2006, pp 5773 – 5776, doi:
10.1109/WCICA.2006.1714182

