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Abstract 
 

Software reliability growth models (SRGMs) are very 
important for software reliability estimation and 
prediction and have been successfully applied in 
software reliability engineering. However, there is no 
general model which can perform well for different cases.  
Therefore, several combinational methods of SRGMs 
have been proposed to improve the reliability estimation 
and prediction accuracy.  

AdaBoosting (short for Adaptive Boosting) is a 
commonly used machine learning (ML) algorithm for 
combining several weak predictors into a single strong 
predictor to significantly improve the forecasting 
accuracy. In this paper, an AdaBoosting-based 
approach for obtaining a dynamic weighted linear 
Combinational Model (ACM) is proposed. The key idea 
of this approach is that we select several SRGMs as the 
weak predictors and use AdaBoosting algorithm to 
determine the weights of these models for obtaining the 
final linear combinational model. 

Finally, two case studies are presented respectively 
for comparing the proposed ACM with five SRGMs and 
a neural-network-based combination approach on 
several real failure data-sets. Preliminary experimental 
results show that this proposed ACM is fairly effective 
and applicable since it has: 1) a significantly better 
goodness-of-fit and prediction capability than the five 
single SRGMs; 2) a comparable at least or even a little 
better fitting and prediction performance than the 
dynamic weighted combinational model based on 
neural-network in most cases. 
 
1. Introduction 

 
Software reliability is defined as the probability of 

failure-free software operation for a special period of time 
in a special usage environment [1]. Over the past 30 years, 
many time-domain models, also called software reliability 
growth models have been proposed for the reliability 
estimation and prediction during software development 
and operation process [1]. However no one has shown to  
 

 
 
perform well for all applications. To improve the 
estimation and prediction accuracy of SRGMs, some 
important factors which affect the final software 
reliability, for example, test coverage [3, 4], test effort [5], 
and some machine learning techniques, such as, GP 
(Genetic Programming) [9], AdaBoosting [10], SVMs 
(Support Vector Machines) [11], ANN (Artifical Neural 
Networks), are considered in the modeling process.  

An ideal SRGM should provide consistently accurate 
reliability estimation and prediction across different 
projects.  However, many researches have shown that 
there is no single such model which can obtain accurate 
results for different cases [2]. The reason is that the 
performance of SRGMs highly depends on the 
assumptions on the failure behavior and the application 
data-sets. In other words, many models may be shown to 
perform well with one failure data-set, but bad with the 
other data-set. Thus, some researchers proposed to obtain 
more accurate estimation and prediction than one single 
model [2, 6~8] by combing some individual SRGMs. For 
example, Lyu [6] proposed four combinational models, 
namely, equal, mediam, unequally and dynamical weight. 
Su [7] used the neural network approach to build a 
dynamic weighted combinational model (DWCM). Hsu 
[8] proposed three combinational models, namely, equal, 
linear, and nonlinear weight, and used genetic algorithm 
to determine the weight assignment.  

AdaBoosting is a commonly used ML algorithm which 
can combine several weak predictors into a single strong 
predictor for highly improving the estimation and 
prediction accuracy. Eduardo [10] has explored GP and 
AdaBoosting techniques to obtain a non-parameter 
software reliability model.  

In this paper, an AdaBoosting-based approach for 
obtaining a dynamic weighted linear Combinational 
Model (ACM) is presented. First, several different 
SRGMs are selected as the weak predictors. Then, we 
study how to use AdaBoosting algorithm to determine the 
weights of these models on the training data-sets for 
obtaining the final linear combinational model. Finally, 
two case studies are presented respectively for comparing 
the proposed ACM with five well-known SRGMs (such 
as GO) and a neural-network-based combination 
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approach (DWCM) [7] on some real failure data-sets. 
Preliminary experimental results are analyzed to 
investigate the estimation and prediction capability of this 
proposed AdaBoosting-based combination approach. 

 
2. An Overview of AdaBoosting 

 
AdaBoosting is a commonly used machine learning 

algorithm for constructing a strong classifier f(x) as linear 
combination of weak classifiers which is shown as 
follows: 
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1
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f x W h x
=

= ∑                                  (1) 

From Eq.1, AdaBoosting calls a weak classifier hi(x) 
repeatedly in a series of rounds i=1...P. For each call a 
distribution of weights Wi is updated that indicates the 
importance of examples in the data-set for the 
classification [12].  
 
3. AdaBoosting-based Combinational Model 
 

Many SRGMs may result in estimation or prediction 
bias since their underlying assumptions are not consistent 
with the characteristics of the application data. To reduce 
this bias, combining several different SRGMs together in 
linear or nonlinear manner is a common and applicable 
method. Many approaches are proposed to determine the 
weight assignment for the combinational models, such as 
equal weight [6], neural-network [7], genetic [8] and etc. 
In this section, an abstract description of how to use 
AdaBoosting to obtain the dynamic weighted linear 
combinational model (ACM) of several SRGMs is shown 
as follows.  

Input: 
1. Let M(t)=u(x1…xk…xS, t) denotes different SRGMs 

(such as GO model). M(t) is the cumulated faults detected 
at time t, S is the number of the parameters of M(t), xk is 
the k-th parameter of M(t), k=1...S; 

2. The failure data-set D0 is denoted by (t1, m1)...(tj, 
mj)...(tn, mn). n is the data number of D0, mj is the 
cumulated faults detected at tj, j=1...n. 

Initialize: 
Step1: Selecting M different SRGMs (denoted by Mm 

(t), m=1...M) as the candidate models for the ACM.  
Step2: The original weight set of D0 can be denoted by 

K0 = {k01... k0n}, where k0j is initialized by 1/n. 
Circulation: 
Step3: New training data set Di (i=1...P, P is the 

training rounds) are generated by repeatedly random 
sampling from D0 according to its corresponding weight 
set Ki={ki1…kij…kin}. If there are some same data in Di, 

only one of them will be reserved in our approach. 
Hence the data number of Di may not be n. 

Step4: Di is used to estimate the parameters of each 
Mm (t) in the i-th training round. Then the fitness 
function (Notation 1) of Mm (t) can be determined by D0. 
The candidate model whose value of fitness function is 
the smallest is chosen as the selected model (denoted by 
Mis (t)) in this round, i=1...P.  

Step5: If ( )
^

isM t denotes the estimation form of Mis 
(t), the loss function Lis (Notation 2) of Mis (t) can be 

calculated by the fitting results of ( )
^

isM t  with D0. 
Then Ki can be updated as Ki+1 by Lis (Notation 3). The 
basic weight isβ  of Mis (t) also can be determined by Lis 
(Notation 4). 

Step6: Performing Step3~Step5 repeatedly until i=P, 
and then turning into Step7. 

Output: 
Step7: Finally, a combinational linear model (i.e. 

ACM) is obtained as follows: 

1
( ) ( )

P

ACM is is
i

M t W M t
=

= ∑                      (2) 

The combination weight isW  of the selected model 

Mis (t) is f( isβ ) (Notation 5), that is, Wis is a function of 

the basic weight isβ . 
Notation 1: 
Fitness function (FF) can be defined according to the 

estimation method of the parameters of these candidate 
SRGMs. In this paper, if Maximum Likelihood 
Estimation is used, FF is equation (3) [8]. If Least Square 
Estimation is used, FF is equation (4) [5]. 

                  1/ log( )FF ML= −                                   (3) 
where ML is the maximum likelihood function.  

             2
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where mj is the observed number of faults by time tj. 
Notation 2: 

isL =
1

*
n

j
ij is

j
k L

=
∑                                            (5) 

where kij is defined in Notation 3. 
There are three equations for calculating j

isL . 

1) Linear: /j j
is is entL AE D= ; 

2) Square: ( / )*( / )j j j
is is ent is entL AE D AE D= ; 

3) Exponential: 1 exp( / )j j
is is entL AE D= − − . 
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where j
is jAE m= − ( )

^

is jM t , { }max j
ent isD AE= . 

Notation 3: 

{ }1 1,i i jK k+ += , jik ,1+ =
1

* /( * )
n

j j
ij is ij is

j
k L k L

=
∑ .     (6) 

Notation 4: 

isβ = /(1 )is isL L−                               (7)  
Notation 5: 

1

1 1( ) log / log
P

is is
iis is

W f β
β β=

= = ∑          (8) 

4. Case Studies 
 

In this section, the fitting and prediction performance 
of the proposed ACM is analyzed by comparing with 
five single NHPP SRGMs on two failure data-sets first 
and secondly with a combination approach (DWCM) on 
another two failure data-sets.  

 
4.1 Case study 1: Comparison with SRGMs 
 

1. Description of this case study 
An experiment in this case study contains the 

following contexts.  
1) In this study, two real failure data-sets are selected, 

Ohba and Wood [5], which are popular and frequently 
used as benchmark for comparison of SRGMs.  

2) Parameters Estimation. Least Square Estimation 
(LSE) is preferred for it produces unbiased results [7].  

3) Fitness Function and Criterion for Model’s 
Comparison. MSE (Eq. 4) is selected as the fitness 
function and comparison criterion.  

4) The following five models (shown in Table 1) are 
selected as the candidate and comparison models, which 
have been widely cited by many researchers in the field 
of software reliability modeling, namely, GO (M1), MO 
(M2), Delayed S-Shaped (M3), Inflected S-Shaped (M4) 
and Generalized GO (M5).  

5) Settings in AdaBoosting. a) Linear equation is used 
for j

isL ; b) The training rounds is 20 (i.e. P=20).   
2. Comparison of goodness-of-fit performance 
1) The estimated parameters of five candidate models 

are shown in Table 1. Then the fitting results (values of 
MSE) of these five models are shown in table 2 
respectively.  

2) With each failure data-set, 100 experiments are 
performed to get 100 ACMs for comparison. Then the 
fitting results of these ACMs are obtained. The ACM 
whose value of MSE (shown in Table 2) is the smallest 
will be selected for comparison and denoted by ACMbest. 
The training process of the ACMbest is shown in Table 3. 

The actual data and the estimation data of these five 
models and ACMbest are also plotted in Fig.1 & 2 against 
the logarithm of the cumulated faults (i.e. mj). 

Table 1 The Estimated Parameters of Five Models 

 
Table 2 Comparison of Goodness-of-fit 

Ohba Wood  
MSE (fit) MSE (fit) 

M1 139.82 11.62 
M2 148.34 15.842 
M3 168.67 25.26 
M4 127.31 8.98 
M5 102.12 10.87 

ACMbest 83.55 2.05 
Notes: The bold indicates the best fitting result 

Table 3 The Training Process of ACMbest 

 
Notes: ‘---’ indicates this training round is invalid for the estimation 
values of the parameters of models are unreasonable or not existing.   

3) From Table 2 and Fig.1 & 2, it should be noted that 
the values of MSE for the goodness-of-fit of the ACMbest 
on two data-sets are both significantly smaller than these 
five models. This means the ACMbest provides the best 
descriptive power and implies that the proposed 
AdaBoosting-based approach can effectively improve 
the fitting accuracy of individual model since the 
AdaBoosting algorithm can optimize the weights of the 
candidate models by training them on data-sets 
repeatedly. To further validate this conclusion and 
illustrate the improvement process of the AdaBoosting-
based approach, the following two sections 4) and 5) 
were proposed and analyzed.  

4) Let MSEm denotes the MSE of each model 
(m=1…5), MSEt denotes the MSE of each ACM 
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(t=1…100). Then we have 
{ }| , 1,...,5, 1,...,100m mt mt m tE e e MSE MSE m t= = − = =  

 
Figure 1  The comparison of fitness with Ohba 

 
Figure 2  The comparison of fitness with Wood 

Em is used to calculate the following three statistics.① 
‘Timesm’ denotes the number of the emt (t=1…100) 
whose value is larger than 0 (namely, ACMt gives a 
better fitting power than Mm). ② ‘MaxErrorm’ denotes 
the largest value of emt (t=1…100), where emt>0. ③ 
‘AvgErrorm’ denotes the average value of emt (t=1…100) 
which can be calculated by the following equation 

AvgErrorm = 1

*
Times

mt mt
t

e e

Times
=
∑ , where emt >0               (9) 

Table 4 shows the results of these above three 
statistics. From Tab. 4, we note that: ①Almost each 
‘Timesm’ is beyond 90 and close to 100 on the two data-
sets (only expect the ‘Times5’ on the Ohba data-set), 
which means that not only the ACMbest but also nearly 
each ACMt (t=1…100) is superior to every Mm in the 
fitting performance in each experiment on each data-set. 
②The ACMbest has a notable improved result of the 
fitting performance compared with each Mm on each 

data-set. For example, compared with M3, the ACMbest 

improves the fitting performance up to 50.4% on Ohba, 
and even up to 91.9% on Wood. ③The proposed 
AdaBoosting-based approach has an effective capability 
for improving the fitting performance. For example, 
compared with M3, the average improved results of 
ACM are 37.1% on Ohba, and even 81.9% on Wood. As 
a whole, the proposed AdaBoosting-based approach for 
combining models is fairly effective for improving the 
fitting performance of single models.  

Table 4 The Results of Three Statistics 

 
Notes: a) The number in bracket is MaxErrorm (or AvgErrorm) divided 
by MSEm which means the maximum (or average) improved result of 
ACMt compared with Mm. b) The bold means the best improved result. 

5) Cj  is denoted as the sampling times of data (tj, mj) 
of D0 in the 100 experiments. Cj  is used to describe the 
sampling distribution (SD) of (tj, mj). The absolute error 
between mj and its estimated value of Mm is given by m

jΔ  

(i.e. m
jΔ =|Mm(tj)-mj|). The average absolute error 

between mj and its estimated value of ACMt is given 
by ACM

jΔ . m
jΔ  and ACM

jΔ are used to describe the fitting 

error distribution (ED) on Mm and ACMt of (tj, mj). Due 
to the limited space, only the figures of SD and FE of 
Ohba and Wood data-sets on M1 and ACMt are shown in 
Fig. 3~4 by normalizing Cj, 

m
jΔ  and ACM

jΔ .  
From Fig.3 and Fig. 4, we note that there is an 

approximatively proportional relationship between SD 
and ED of the failure data. In other words, if the m

jΔ  and 
ACM
jΔ  become larger, and then the sampling times of 

data (tj, mj) become more. We think this may be the 
improvement process of the AdaBoosting-based 
approach which means that the failure data with large 
fitting errors on Mm and ACM will be selected and 
trained by AdaBoosting many times so as to improve the 
fitting performance of the model on this failure data. 

3. Comparison of prediction performance 
1) The first 17 failure data of Ohba and the first 18 

failure data of Wood are used to estimate the parameters 
in Mm (m=1…5) and the ACMbest. Then the remaining 2 
failure data of these two data-sets are used to compare 
the prediction power of these models. The MSE values 
for the prediction power are listed in Table 5.  

2) From Table 5, we note that the values of MSE for 
the prediction of the ACMbest on two data-sets are both 
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significantly smaller than four single models (except M3). 
This means the ACMbest provides a pretty prediction  

 
Fig.3 The SD and ED of Ohba Data-set 

 
Fig.4 The SD and ED of Wood Data-set 

Table 5 Comparison of Prediction 
Ohba Wood  

MSE (prediction) MSE (prediction) 
M1 1133.80 63.93 
M2 1202.90 106.77 
M3 27.17 0.45 
M4 377.35 34.85 
M5 376.65 62.21 

ACMbest 90.42 2.60 
Notes: The bold indicate the two best fitting results 
power and implies that the proposed approach can 
effectively improve the prediction accuracy of individual 
model. It should be noted that the values of MSE for the 
prediction of M3 on two data-sets are both smaller than 
the ACMbest. However, the fitting performance of M3 
(shown in Tab.2) is significantly worse than the ACMbest. 
Thus we think it is just a coincidence for the number of 
failure data used to prediction is a little less.  

To sum up, according to the section 2 and 3 in 4.1, 
ACM can improve the fitting and prediction accuracy 
compared with five single SRGMs effectively. 

4.2 Case study 2: Comparison with DWCM 
 

 1. Description of this case study 
An experiment in this case study contains the 

following contexts. 
1) In this study, two classical failure data-sets used in 

[7] are selected, namely DS1 and DS2 [1]. 
2) Parameters Estimation. Least Square Estimation 

(LSE) is preferred.  
3) The dynamic weighted combinational model based 

on neural-network (DWCM) [7] is selected as the 
comparison model.  

4) Fitness Function and Comparison Criterion. MSE 
(Eq. 4) is selected as the fitness function. The average 
relative error (AE, used in [7]) is selected as the 
comparison criterion for the convenience of comparison.  

1

( )1 100
( )

n
j j

j j

m t m
AE

n m t=

−
= ×∑                          (10) 

5) Settings in AdaBoosting. a) Linear equation is used 
for j

isL ; b) The training rounds is 20 (i.e. P=20).   
6) GO (M1), Delayed S-Shaped (M3) and Inflected S-

Shaped (M4) are selected as the candidate models, which 
are the selected models in [7]. 

7) The first x% of the total failure data is used for 
calculating the parameters and comparing the fitting 
performance of the DWCM and ACMbest. Then the rest 
of the failure data is used for comparing the prediction 
performance of the DWCM and ACMbest. 

2. Comparison on DS1 
In this study, we also perform 100 experiments with 

each data-set and select the ACMbest for comparison. 
1) Table 6 gives the average relative error for 

different x% values that are from 50% to 100%, which is 
used to compare the fitting performance. Table 7 gives 
the average relative error for different x% values that are 
from 50% to 90%, which is used to compare the 
prediction performance. 

Table 6 Comparison of Goodness-of-fit on DS1 
DWCM ACMbest x% 
AE (fit) AE (fit) 

50% 2.28 7.9372 
60% 3.24 8.5976 
70% 1.9 7.4753 
80% 1.79 6.9791 
90% 1.5 3.5646 

100% 1.64 3.3995 
Table 7 Comparison of Prediction on DS1 

DWCM ACMbest x% 
AE (Prediction) AE (Prediction) 

50% 13.18 2.6372 
60% 7.3 2.4433 
70% 3.44 3.8211 
80% 2.92 2.103 
90% 1.76 1.3275 
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2) From Tab.6, the values of AE from 50% to 100% 
of the proposed ACMbest are all larger than the DWCM. 
It means that the ACMbest provides a worse fitting 
performance than DWCM on DS1. However, from Tab.7, 
we note that the values of AE from 50% to 90% of the 
ACMbest are nearly all smaller than the DWCM. Thus, 
the ACMbest provides a better prediction performance 
than DWCM on DS1 at least. Tab.6 & 7 also show that 
the fitting and prediction results are obviously improved 
with the growth of x% values. More information about 
the failures can help the AdaBoosting optimize the 
weights of the candidate models more effectively. 

3. Comparison on DS2 
1) Table 8 gives the average relative error for 

different x% values that are from 50% to 100%, which is 
used to compare the fitting performance. Table 9 gives 
the average relative error for different x% values that are 
from 50% to 90%, which is used to compare the 
prediction performance. 

Table 8 Comparison of Goodness-of-fit on DS2 
DWCM ACMbest x% 
AE (fit) AE (fit) 

50% 6.43 5.4372 
60% 6.56 5.0749 
70% 5.67 4.6119 
80% 5.27 4.3877 
90% 4.77 3.801 

100% 4.3 3.5209 
Table 9 Comparison of Prediction on DS2 

DWCM ACMbest x% 
AE (Prediction) AE (Prediction) 

50% 6.7 5.2925 
60% 5.51 5.3475 
70% 3.69 1.9791 
80% 1.01 1.0965 
90% 0.22 0.7189 
2) From Tab.8, we note that the values of AE from 

50% to 100% of the proposed ACMbest are all smaller 
than the DWCM. It means that the ACMbest provides a 
better fitting performance than DWCM on DS2. 
Furthermore, from Tab.9, the values of AE from 50% to 
70% of the proposed ACMbest are all smaller than the 
DWCM, 80% is nearly the same, and only 90% is larger. 
As a whole, the proposed ACMbest provides a better 
prediction performance than DWCM on DS2.  

To sum up, according to the analysis of the section 2 
and 3 in 4.2, we suggest that, compared with the DWCM, 
the proposed ACM has a comparable at least or even a 
little better fitting and prediction performance on DS1 
and DS2 in most cases.  
 
5. Conclusion 

 
In this paper, an AdaBoosting-based approach is 

presented for obtaining a dynamic weighted linear 

combinational model. Two case studies are then presented 
and analyzed for comparing this approach with several 
SRGMs and a combination approach (DWCM). The 
results (Tab.2&4, Tab.5~9, Fig.1&2) of case studies show 
that the proposed approach provides much better accuracy 
in reliability estimation and prediction compared with five 
single SRGMs (M1~M5) and a comparable or a little better 
accuracy compared with DWCM in most cases.  

Hsu proposed a Genetic-based combination approach 
[8] (GCM) and applied GCM into a failure data-set of 
web-based software. However this data-set was not 
shown in [8], we can’t compare the ACM with GCM at 
present. Thus, the following issues will be further 
discussed in our future work: 1) Investigating the fitting 
and prediction performance of the ACM by using 
maximum likelihood estimation to estimate the 
parameters of models; 2) Examining the statistical 
significance of the estimation and prediction results of the 
ACM; 3) Comparing with the other combination 
approaches (such as GCM).  
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