
1

Exploring AdaBoosting Algorithm for Combining Software Reliability Models

Haifeng Li, Min Zeng, and Minyan Lu
Department of Engineering System and Engineering, BeiHang University, China

lihaifeng@dse.buaa.edu.cn

Abstract

Software reliability growth models (SRGMs) are very
important for software reliability estimation and
prediction and have been successfully applied in
software reliability engineering. However, there is no
general model which can perform well for different cases.
Therefore, several combinational methods of SRGMs
have been proposed to improve the reliability estimation
and prediction accuracy.

AdaBoosting (short for Adaptive Boosting) is a
commonly used machine learning (ML) algorithm for
combining several weak predictors into a single strong
predictor to significantly improve the forecasting
accuracy. In this paper, an AdaBoosting-based
approach for obtaining a dynamic weighted linear
Combinational Model (ACM) is proposed. The key idea
of this approach is that we select several SRGMs as the
weak predictors and use AdaBoosting algorithm to
determine the weights of these models for obtaining the
final linear combinational model.

Finally, two case studies are presented respectively
for comparing the proposed ACM with five SRGMs and
a neural-network-based combination approach on
several real failure data-sets. Preliminary experimental
results show that this proposed ACM is fairly effective
and applicable since it has: 1) a significantly better
goodness-of-fit and prediction capability than the five
single SRGMs; 2) a comparable at least or even a little
better fitting and prediction performance than the
dynamic weighted combinational model based on
neural-network in most cases.

1. Introduction

Software reliability is defined as the probability of

failure-free software operation for a special period of time
in a special usage environment [1]. Over the past 30 years,
many time-domain models, also called software reliability
growth models have been proposed for the reliability
estimation and prediction during software development
and operation process [1]. However no one has shown to

perform well for all applications. To improve the
estimation and prediction accuracy of SRGMs, some
important factors which affect the final software
reliability, for example, test coverage [3, 4], test effort [5],
and some machine learning techniques, such as, GP
(Genetic Programming) [9], AdaBoosting [10], SVMs
(Support Vector Machines) [11], ANN (Artifical Neural
Networks), are considered in the modeling process.

An ideal SRGM should provide consistently accurate
reliability estimation and prediction across different
projects. However, many researches have shown that
there is no single such model which can obtain accurate
results for different cases [2]. The reason is that the
performance of SRGMs highly depends on the
assumptions on the failure behavior and the application
data-sets. In other words, many models may be shown to
perform well with one failure data-set, but bad with the
other data-set. Thus, some researchers proposed to obtain
more accurate estimation and prediction than one single
model [2, 6~8] by combing some individual SRGMs. For
example, Lyu [6] proposed four combinational models,
namely, equal, mediam, unequally and dynamical weight.
Su [7] used the neural network approach to build a
dynamic weighted combinational model (DWCM). Hsu
[8] proposed three combinational models, namely, equal,
linear, and nonlinear weight, and used genetic algorithm
to determine the weight assignment.

AdaBoosting is a commonly used ML algorithm which
can combine several weak predictors into a single strong
predictor for highly improving the estimation and
prediction accuracy. Eduardo [10] has explored GP and
AdaBoosting techniques to obtain a non-parameter
software reliability model.

In this paper, an AdaBoosting-based approach for
obtaining a dynamic weighted linear Combinational
Model (ACM) is presented. First, several different
SRGMs are selected as the weak predictors. Then, we
study how to use AdaBoosting algorithm to determine the
weights of these models on the training data-sets for
obtaining the final linear combinational model. Finally,
two case studies are presented respectively for comparing
the proposed ACM with five well-known SRGMs (such
as GO) and a neural-network-based combination

Copyright ISSRE 2009

2

approach (DWCM) [7] on some real failure data-sets.
Preliminary experimental results are analyzed to
investigate the estimation and prediction capability of this
proposed AdaBoosting-based combination approach.

2. An Overview of AdaBoosting

AdaBoosting is a commonly used machine learning

algorithm for constructing a strong classifier f(x) as linear
combination of weak classifiers which is shown as
follows:

() ()
1

P

i i
i

f x W h x
=

= ∑ (1)

From Eq.1, AdaBoosting calls a weak classifier hi(x)
repeatedly in a series of rounds i=1...P. For each call a
distribution of weights Wi is updated that indicates the
importance of examples in the data-set for the
classification [12].

3. AdaBoosting-based Combinational Model

Many SRGMs may result in estimation or prediction
bias since their underlying assumptions are not consistent
with the characteristics of the application data. To reduce
this bias, combining several different SRGMs together in
linear or nonlinear manner is a common and applicable
method. Many approaches are proposed to determine the
weight assignment for the combinational models, such as
equal weight [6], neural-network [7], genetic [8] and etc.
In this section, an abstract description of how to use
AdaBoosting to obtain the dynamic weighted linear
combinational model (ACM) of several SRGMs is shown
as follows.

Input:
1. Let M(t)=u(x1…xk…xS, t) denotes different SRGMs

(such as GO model). M(t) is the cumulated faults detected
at time t, S is the number of the parameters of M(t), xk is
the k-th parameter of M(t), k=1...S;

2. The failure data-set D0 is denoted by (t1, m1)...(tj,
mj)...(tn, mn). n is the data number of D0, mj is the
cumulated faults detected at tj, j=1...n.

Initialize:
Step1: Selecting M different SRGMs (denoted by Mm

(t), m=1...M) as the candidate models for the ACM.
Step2: The original weight set of D0 can be denoted by

K0 = {k01... k0n}, where k0j is initialized by 1/n.
Circulation:
Step3: New training data set Di (i=1...P, P is the

training rounds) are generated by repeatedly random
sampling from D0 according to its corresponding weight
set Ki={ki1…kij…kin}. If there are some same data in Di,

only one of them will be reserved in our approach.
Hence the data number of Di may not be n.

Step4: Di is used to estimate the parameters of each
Mm (t) in the i-th training round. Then the fitness
function (Notation 1) of Mm (t) can be determined by D0.
The candidate model whose value of fitness function is
the smallest is chosen as the selected model (denoted by
Mis (t)) in this round, i=1...P.

Step5: If ()
^

isM t denotes the estimation form of Mis
(t), the loss function Lis (Notation 2) of Mis (t) can be

calculated by the fitting results of ()
^

isM t with D0.
Then Ki can be updated as Ki+1 by Lis (Notation 3). The
basic weight isβ of Mis (t) also can be determined by Lis
(Notation 4).

Step6: Performing Step3~Step5 repeatedly until i=P,
and then turning into Step7.

Output:
Step7: Finally, a combinational linear model (i.e.

ACM) is obtained as follows:

1
() ()

P

ACM is is
i

M t W M t
=

= ∑ (2)

The combination weight isW of the selected model

Mis (t) is f(isβ) (Notation 5), that is, Wis is a function of

the basic weight isβ .
Notation 1:
Fitness function (FF) can be defined according to the

estimation method of the parameters of these candidate
SRGMs. In this paper, if Maximum Likelihood
Estimation is used, FF is equation (3) [8]. If Least Square
Estimation is used, FF is equation (4) [5].

 1/ log()FF ML= − (3)
where ML is the maximum likelihood function.

 2

1
() /

n

j j
j

FF MSE m t m n
=

⎡ ⎤= = −⎣ ⎦∑ (4)

where mj is the observed number of faults by time tj.
Notation 2:

isL =
1

*
n

j
ij is

j
k L

=
∑ (5)

where kij is defined in Notation 3.
There are three equations for calculating j

isL .

1) Linear: /j j
is is entL AE D= ;

2) Square: (/)*(/)j j j
is is ent is entL AE D AE D= ;

3) Exponential: 1 exp(/)j j
is is entL AE D= − − .

3

where j
is jAE m= − ()

^

is jM t , { }max j
ent isD AE= .

Notation 3:

{ }1 1,i i jK k+ += , jik ,1+ =
1

* /(*)
n

j j
ij is ij is

j
k L k L

=
∑ . (6)

Notation 4:

isβ = /(1)is isL L− (7)
Notation 5:

1

1 1() log / log
P

is is
iis is

W f β
β β=

= = ∑ (8)

4. Case Studies

In this section, the fitting and prediction performance
of the proposed ACM is analyzed by comparing with
five single NHPP SRGMs on two failure data-sets first
and secondly with a combination approach (DWCM) on
another two failure data-sets.

4.1 Case study 1: Comparison with SRGMs

1. Description of this case study
An experiment in this case study contains the

following contexts.
1) In this study, two real failure data-sets are selected,

Ohba and Wood [5], which are popular and frequently
used as benchmark for comparison of SRGMs.

2) Parameters Estimation. Least Square Estimation
(LSE) is preferred for it produces unbiased results [7].

3) Fitness Function and Criterion for Model’s
Comparison. MSE (Eq. 4) is selected as the fitness
function and comparison criterion.

4) The following five models (shown in Table 1) are
selected as the candidate and comparison models, which
have been widely cited by many researchers in the field
of software reliability modeling, namely, GO (M1), MO
(M2), Delayed S-Shaped (M3), Inflected S-Shaped (M4)
and Generalized GO (M5).

5) Settings in AdaBoosting. a) Linear equation is used
for j

isL ; b) The training rounds is 20 (i.e. P=20).
2. Comparison of goodness-of-fit performance
1) The estimated parameters of five candidate models

are shown in Table 1. Then the fitting results (values of
MSE) of these five models are shown in table 2
respectively.

2) With each failure data-set, 100 experiments are
performed to get 100 ACMs for comparison. Then the
fitting results of these ACMs are obtained. The ACM
whose value of MSE (shown in Table 2) is the smallest
will be selected for comparison and denoted by ACMbest.
The training process of the ACMbest is shown in Table 3.

The actual data and the estimation data of these five
models and ACMbest are also plotted in Fig.1 & 2 against
the logarithm of the cumulated faults (i.e. mj).

Table 1 The Estimated Parameters of Five Models

Table 2 Comparison of Goodness-of-fit

Ohba Wood
MSE (fit) MSE (fit)

M1 139.82 11.62
M2 148.34 15.842
M3 168.67 25.26
M4 127.31 8.98
M5 102.12 10.87

ACMbest 83.55 2.05
Notes: The bold indicates the best fitting result

Table 3 The Training Process of ACMbest

Notes: ‘---’ indicates this training round is invalid for the estimation
values of the parameters of models are unreasonable or not existing.

3) From Table 2 and Fig.1 & 2, it should be noted that
the values of MSE for the goodness-of-fit of the ACMbest
on two data-sets are both significantly smaller than these
five models. This means the ACMbest provides the best
descriptive power and implies that the proposed
AdaBoosting-based approach can effectively improve
the fitting accuracy of individual model since the
AdaBoosting algorithm can optimize the weights of the
candidate models by training them on data-sets
repeatedly. To further validate this conclusion and
illustrate the improvement process of the AdaBoosting-
based approach, the following two sections 4) and 5)
were proposed and analyzed.

4) Let MSEm denotes the MSE of each model
(m=1…5), MSEt denotes the MSE of each ACM

4

(t=1…100). Then we have
{ }| , 1,...,5, 1,...,100m mt mt m tE e e MSE MSE m t= = − = =

Figure 1 The comparison of fitness with Ohba

Figure 2 The comparison of fitness with Wood

Em is used to calculate the following three statistics.①
‘Timesm’ denotes the number of the emt (t=1…100)
whose value is larger than 0 (namely, ACMt gives a
better fitting power than Mm). ② ‘MaxErrorm’ denotes
the largest value of emt (t=1…100), where emt>0. ③
‘AvgErrorm’ denotes the average value of emt (t=1…100)
which can be calculated by the following equation

AvgErrorm = 1

*
Times

mt mt
t

e e

Times
=
∑ , where emt >0 (9)

Table 4 shows the results of these above three
statistics. From Tab. 4, we note that: ①Almost each
‘Timesm’ is beyond 90 and close to 100 on the two data-
sets (only expect the ‘Times5’ on the Ohba data-set),
which means that not only the ACMbest but also nearly
each ACMt (t=1…100) is superior to every Mm in the
fitting performance in each experiment on each data-set.
②The ACMbest has a notable improved result of the
fitting performance compared with each Mm on each

data-set. For example, compared with M3, the ACMbest

improves the fitting performance up to 50.4% on Ohba,
and even up to 91.9% on Wood. ③The proposed
AdaBoosting-based approach has an effective capability
for improving the fitting performance. For example,
compared with M3, the average improved results of
ACM are 37.1% on Ohba, and even 81.9% on Wood. As
a whole, the proposed AdaBoosting-based approach for
combining models is fairly effective for improving the
fitting performance of single models.

Table 4 The Results of Three Statistics

Notes: a) The number in bracket is MaxErrorm (or AvgErrorm) divided
by MSEm which means the maximum (or average) improved result of
ACMt compared with Mm. b) The bold means the best improved result.

5) Cj is denoted as the sampling times of data (tj, mj)
of D0 in the 100 experiments. Cj is used to describe the
sampling distribution (SD) of (tj, mj). The absolute error
between mj and its estimated value of Mm is given by m

jΔ

(i.e. m
jΔ =|Mm(tj)-mj|). The average absolute error

between mj and its estimated value of ACMt is given
by ACM

jΔ . m
jΔ and ACM

jΔ are used to describe the fitting

error distribution (ED) on Mm and ACMt of (tj, mj). Due
to the limited space, only the figures of SD and FE of
Ohba and Wood data-sets on M1 and ACMt are shown in
Fig. 3~4 by normalizing Cj,

m
jΔ and ACM

jΔ .
From Fig.3 and Fig. 4, we note that there is an

approximatively proportional relationship between SD
and ED of the failure data. In other words, if the m

jΔ and
ACM
jΔ become larger, and then the sampling times of

data (tj, mj) become more. We think this may be the
improvement process of the AdaBoosting-based
approach which means that the failure data with large
fitting errors on Mm and ACM will be selected and
trained by AdaBoosting many times so as to improve the
fitting performance of the model on this failure data.

3. Comparison of prediction performance
1) The first 17 failure data of Ohba and the first 18

failure data of Wood are used to estimate the parameters
in Mm (m=1…5) and the ACMbest. Then the remaining 2
failure data of these two data-sets are used to compare
the prediction power of these models. The MSE values
for the prediction power are listed in Table 5.

2) From Table 5, we note that the values of MSE for
the prediction of the ACMbest on two data-sets are both

5

significantly smaller than four single models (except M3).
This means the ACMbest provides a pretty prediction

Fig.3 The SD and ED of Ohba Data-set

Fig.4 The SD and ED of Wood Data-set

Table 5 Comparison of Prediction
Ohba Wood

MSE (prediction) MSE (prediction)
M1 1133.80 63.93
M2 1202.90 106.77
M3 27.17 0.45
M4 377.35 34.85
M5 376.65 62.21

ACMbest 90.42 2.60
Notes: The bold indicate the two best fitting results
power and implies that the proposed approach can
effectively improve the prediction accuracy of individual
model. It should be noted that the values of MSE for the
prediction of M3 on two data-sets are both smaller than
the ACMbest. However, the fitting performance of M3
(shown in Tab.2) is significantly worse than the ACMbest.
Thus we think it is just a coincidence for the number of
failure data used to prediction is a little less.

To sum up, according to the section 2 and 3 in 4.1,
ACM can improve the fitting and prediction accuracy
compared with five single SRGMs effectively.

4.2 Case study 2: Comparison with DWCM

 1. Description of this case study
An experiment in this case study contains the

following contexts.
1) In this study, two classical failure data-sets used in

[7] are selected, namely DS1 and DS2 [1].
2) Parameters Estimation. Least Square Estimation

(LSE) is preferred.
3) The dynamic weighted combinational model based

on neural-network (DWCM) [7] is selected as the
comparison model.

4) Fitness Function and Comparison Criterion. MSE
(Eq. 4) is selected as the fitness function. The average
relative error (AE, used in [7]) is selected as the
comparison criterion for the convenience of comparison.

1

()1 100
()

n
j j

j j

m t m
AE

n m t=

−
= ×∑ (10)

5) Settings in AdaBoosting. a) Linear equation is used
for j

isL ; b) The training rounds is 20 (i.e. P=20).
6) GO (M1), Delayed S-Shaped (M3) and Inflected S-

Shaped (M4) are selected as the candidate models, which
are the selected models in [7].

7) The first x% of the total failure data is used for
calculating the parameters and comparing the fitting
performance of the DWCM and ACMbest. Then the rest
of the failure data is used for comparing the prediction
performance of the DWCM and ACMbest.

2. Comparison on DS1
In this study, we also perform 100 experiments with

each data-set and select the ACMbest for comparison.
1) Table 6 gives the average relative error for

different x% values that are from 50% to 100%, which is
used to compare the fitting performance. Table 7 gives
the average relative error for different x% values that are
from 50% to 90%, which is used to compare the
prediction performance.

Table 6 Comparison of Goodness-of-fit on DS1
DWCM ACMbest x%
AE (fit) AE (fit)

50% 2.28 7.9372
60% 3.24 8.5976
70% 1.9 7.4753
80% 1.79 6.9791
90% 1.5 3.5646

100% 1.64 3.3995
Table 7 Comparison of Prediction on DS1

DWCM ACMbest x%
AE (Prediction) AE (Prediction)

50% 13.18 2.6372
60% 7.3 2.4433
70% 3.44 3.8211
80% 2.92 2.103
90% 1.76 1.3275

6

2) From Tab.6, the values of AE from 50% to 100%
of the proposed ACMbest are all larger than the DWCM.
It means that the ACMbest provides a worse fitting
performance than DWCM on DS1. However, from Tab.7,
we note that the values of AE from 50% to 90% of the
ACMbest are nearly all smaller than the DWCM. Thus,
the ACMbest provides a better prediction performance
than DWCM on DS1 at least. Tab.6 & 7 also show that
the fitting and prediction results are obviously improved
with the growth of x% values. More information about
the failures can help the AdaBoosting optimize the
weights of the candidate models more effectively.

3. Comparison on DS2
1) Table 8 gives the average relative error for

different x% values that are from 50% to 100%, which is
used to compare the fitting performance. Table 9 gives
the average relative error for different x% values that are
from 50% to 90%, which is used to compare the
prediction performance.

Table 8 Comparison of Goodness-of-fit on DS2
DWCM ACMbest x%
AE (fit) AE (fit)

50% 6.43 5.4372
60% 6.56 5.0749
70% 5.67 4.6119
80% 5.27 4.3877
90% 4.77 3.801

100% 4.3 3.5209
Table 9 Comparison of Prediction on DS2

DWCM ACMbest x%
AE (Prediction) AE (Prediction)

50% 6.7 5.2925
60% 5.51 5.3475
70% 3.69 1.9791
80% 1.01 1.0965
90% 0.22 0.7189
2) From Tab.8, we note that the values of AE from

50% to 100% of the proposed ACMbest are all smaller
than the DWCM. It means that the ACMbest provides a
better fitting performance than DWCM on DS2.
Furthermore, from Tab.9, the values of AE from 50% to
70% of the proposed ACMbest are all smaller than the
DWCM, 80% is nearly the same, and only 90% is larger.
As a whole, the proposed ACMbest provides a better
prediction performance than DWCM on DS2.

To sum up, according to the analysis of the section 2
and 3 in 4.2, we suggest that, compared with the DWCM,
the proposed ACM has a comparable at least or even a
little better fitting and prediction performance on DS1
and DS2 in most cases.

5. Conclusion

In this paper, an AdaBoosting-based approach is

presented for obtaining a dynamic weighted linear

combinational model. Two case studies are then presented
and analyzed for comparing this approach with several
SRGMs and a combination approach (DWCM). The
results (Tab.2&4, Tab.5~9, Fig.1&2) of case studies show
that the proposed approach provides much better accuracy
in reliability estimation and prediction compared with five
single SRGMs (M1~M5) and a comparable or a little better
accuracy compared with DWCM in most cases.

Hsu proposed a Genetic-based combination approach
[8] (GCM) and applied GCM into a failure data-set of
web-based software. However this data-set was not
shown in [8], we can’t compare the ACM with GCM at
present. Thus, the following issues will be further
discussed in our future work: 1) Investigating the fitting
and prediction performance of the ACM by using
maximum likelihood estimation to estimate the
parameters of models; 2) Examining the statistical
significance of the estimation and prediction results of the
ACM; 3) Comparing with the other combination
approaches (such as GCM).

References

[1] M. R. Lyu. Handbook of Software Reliability Engineering.
McGraw Hill, 1996
[2] S. M. Li, Q. Yin, P. Guo and M. R. Lyu. A hierarchical
mixture model for software reliability prediction. Applied
Mathematics and Computation, 2007, 185: 1120~1130
[3] X. Cai, M. R. Lyu. Software Reliability Modeling with Test
Coverage Experimentation and Measurement with a Fault-
Tolerant Software Project. ISSRE, 2007: 17~26
[4] Yashwant K. Malaiya, Michael Naixin Li and etc. Software
reliability growth with test coverage. IEEE Transactions on
Reliability, 2002, 51(4): 420～426.
[5] C. Y. Huang, S. Y. Kuo and M. R. Lyu. An assessment of
testing-effort dependent software reliability growth models.
IEEE Transactions on Reliability, 2007, 56(2): 198~211
[6] Lyu, M. R, Nikora, A. Applying Reliability Models More
Effective. IEEE Software, 1992, 9(4): 43-52
[7] Y. S. Su, C. Y. Huang. Neural-network-based approaches for
software reliability estimation using dynamic weighted
combinational models. The Journal of Systems and Software,
2007, 80: 606-615
[8] C. J. Hsu, C. Y. Huang. Reliability analysis using weighted
combinational models for web-based software. WWW 2009,
1131~1132
[9] Eduardo Oliveira Costa, Silvia R. Vergilio, Aurora Pozo,
Gustavo Souza. Modeling software reliability growth with
Genetic Programming. ISSRE, 2005: 1~10
[10] Eduardo Oliveira Costa, Gustavo Souza, Aurora Pozo,
Silvia R. Vergilio. Exploring Genetic Programming and
Boosting Techniques to Model Software Reliability. IEEE
Transactions on Reliability, 2007, 56(3): 422-434
[11] Ping-Feng Pai and et al. Software reliability forecasting by
support vector machines with simulated annealing algorithms.
The journal of Systems and Software, 2006, 79: 747~755
[12] http://en.wikipedia.org/wiki/AdaBoost

