
Early Software Reliability Prediction Using ANN for Process Oriented Development

at Prototype Level

K. Krishna Mohan1, A. K. Verma2, A. Srividya3
1
Reliability Engineering Group,

 2
Department of Electrical Engineering,

 3
 Department of Civil Engineering

 Indian Institute of Technology Bombay, Mumbai – 400076, INDIA

kkm@ee.iitb.ac.in, akv@ee.iitb.ac.in, asvidya@civil.iitb.ac.in

Abstract-It is important to take into account the proven

processes like Rational Unified Process (RUP) to mitigate risks

and increase the reliability of systems while building

distributed based applications. This paper presents an

algorithm using feed-forward neural network for early

qualitative software reliability prediction. The inputs for

neural networks consist of techno-complexity, practitioner’s

level, creation effort, size and leakage defects. The number of

defects detected in each cycle can be predicted by using

Artificial Neural Network (ANN).

Key words: Software Reliability prediction, Artificial Neural

Network, Process oriented development, Leakage defects.

I. INTRODUCTION

This paper provides an approach for early qualitative and
software reliability prediction [1] using Artificial Neural
Network (ANN) and the adoption of RUP in building the
applications, focusing on various areas of software
development. Reliability prediction has to be done early in
the Software Development Life Cycle (SDLC) at the
prototype level before the actual development process. In
general, any predictions about real time implementation are
solely based on the prototype studies. A unique take on
strengthening the role of the prototype itself, without
actually realizing it, would be to arrive at predictions using
historical information from similar PoCs or the permeating
experience of those involved in projects of comparable
nature. Using ANN should make this crucial bypassing
feasible, which has been illustrated in this paper.

II. SOFTWARE RELIABILITY PREDICTION USING ANN

This section explains the use of ANN for predicting the
defects before taking up a project implementation well
before the beginning the project. The output variable refers
to the expected number of defects in the software before the
beginning of the project and the software development
stages considered are requirements, design, coding, unit
testing and IST testing. The application of ANN has been
gaining importance in the area of software reliability [2].
The neural networks have the advantages of adaptive
learning, non-linear generalization, fault tolerance,
resistance to noisy data, and parallel computation abilities.
ANN models contain three steps: data normalization,
network training, and fault prediction. In this paper, techno-
complexity (technology + complexity), practitioner's level
(experience + product familiarity), creation effort, size and
leakage defects are used as input features. The data sets
obtained from a high maturity software development

organization are selected for collecting the data in the form
of a defect consolidation log table.

III. DEFECT PREDICTION

A neural network can recognize various conditions or
states of a complex system once it has been trained. Feed-
forward neural network is set up and back propagation
algorithms are used for the training. Input layer in the
network is set up with one node for each input feature.
Hence, architecture with single hidden layer is selected. The
number of neurons in the hidden layer is decided using a
trial and error method. Starting from two, the number of
neurons is increased by one in each trial until the required
accuracy is achieved with quick convergence. The neuron in
the output layer represents the predicted number of defects.
To illustrate the proposed model, the defects are predicted
for an electronic fund transfer module. Based on the data
collected from the defect consolidation log for a typical
module, of the fifteen modules used in the study for each
phase, 9 modules are used for training, and 6 modules are
used for testing. The input features are normalized in the
range of 0.0 to 1.0 for all the features. The network is
trained using different back propagation algorithms and it is
observed that Levenberg–Marquardt (LM) [3] algorithm
converges quickly. Hence, this algorithm is used for the
training. Log sigmoid and tan sigmoid activation functions
are used for neurons in the hidden layer and the output layer,
respectively. Using trial and error method, the number of
neurons in the hidden layer is obtained as 9. The weights
and biases of the network are initially selected randomly.
The stopping criteria used for training process is the
achievement of one of the conditions namely mean square
error of 10

−2
, gradient of 10

−10
 or 100 epochs. In the RUP

modules considered in this paper, the execution of each
module is done iteratively in three cycles. Each cycle
consists of five stages namely requirements, design, coding,
unit testing and IST testing. The actual number of defects
observed in each phase is shown in Table 1. The
effectiveness of the proposed neutral network is evaluated in
terms of Mean Magnitude of Relative Error (MMRE). The
MMRE is defined as:

MMRE = |(predicted defects-actual defects)/actual defects |.

Discussions on the acceptable limits of MMRE for
qualitative software defect predictions are given in [4]. It
can be observed that MMRE of the predictions shown in
Table 1, using the proposed ANN model with five input
features are found to be in acceptable limits. It was observed

Copyright ISSRE 2009

mailto:asvidya@ee.iitb.ac.in

that the network with leakage defects as an input feature
gives better predictions. The actual and predicted defects for
all the modules in various phases in cycle 1 are shown in
Fig. 1. The difference between the actual number of defects
and the neutral network predictions are marginal in most of
the cases.

IV. CONCLUSIONS

Usage of Neutral Network acts as a conclusive weighing

factor in deciding upon the taking up of a project

implementation. In effect, a feasibility study has been

conducted in this paper, which acts as a significant pointer

towards the capture of qualitative reliability (in the form of

expected number of defects) well before the beginning of

the project. The proposed model has been applied to real

time project it is and observed that the MMRE values are

within the acceptable limits.

Phases of
RUP

Average
number of

defects

MMRE of
ANN

Predictions

 Cycle 1
Requirements 3 0.23

Design 5 0.31

Coding 33 0.07

Unit testing 117 0.16
IST Testing 20 0.28

Cycle 2

Requirements 2 0.14

Design 5 0.47

Coding 19 0.05

Unit testing 34 0.17

IST Testing 10 0.14

Cycle 3

Requirements 2 0.10

Design 2 0.22

Coding 2 0.04

Unit testing 4 0.59

IST Testing 2 0.13

Table1 Actual number of defects and errors in ANN

predictions

Fig.1. Actual and predicted number of defects for various

phases in cycle 1

a) Requirements b) Design c) Coding d)Unit testing e) IST

testing

REFERENCES

[1] Smidts, C., Stutzke, M. & Stoddard, R.W. 1998, "Software reliability

modeling: An approach to early reliability prediction”, IEEE

Transactions on Reliability, 47(3),(1998), pp. 268-278.

[2] Cai, K.Y., Cai, L., Wang, W.D., Yu, Z.Y. & Zhang, D, 'On the neural

network approach in software reliability modeling,' Journal of

Systems and Software, 58(1), (2001), pp. 47-62.

[3] C. Bishop, Neural networks for pattern recognition, Oxford University

Press, New York, (1995).

[4] A.K.Verma, R.Anil, Om Prakash Jain, Fuzzy logic Based Maturity

Rating for Software Performance Prediction”, International Journal of

Automation and Computing”, 4(4), 2007, pp.406-412.

