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Abstract—This paper shows that a test suite (a set of testcases) 
that enables software test engineers to rapidly and 
comprehensively execute software features of high use 
probability is generated from an operational profile by using a 
genetic algorithm. Test suites are represented as chromosomes, 
and genetic operations such as crossover, mutation and 
selection are applied to them. Usage distribution coverage 
(UDC) is used for evaluating the fitness of chromosomes. We 
have developed a tool for automating this method, and showed 
a simple example. 
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I.  INTRODUCTION 
An operational profile is a model that represents the 

usage characteristics of software in its operational 
environments as a probabilistic state machine, and it is 
typically used for generating testcases (state transition 
sequences from an initial state to a final state) in software 
testing. It is well-known that the operational profile allows 
the infinite generation of testcases in order to evaluate 
software reliability based on the law of large number [1]. On 
the other hand, software test engineers having a limited 
period of time require a new testcase generation method to 
perform agile testing (i.e., to rapidly and comprehensively 
test software features of high use probability). 

A recent study [2] proposed usage distribution coverage 
(UDC) that indicates what percentage of software use has 
been executed by a test suite (a set of testcases) and each 
individual testcase. Therefore, the new testcase generation 
method described above can be viewed from the 
optimization problem of maximizing UDC within the size of 
a test suite (the number of state transitions) that engineers 
can perform. Since solving this problem deterministically is 
difficult, one of effective techniques is to introduce meta-
heuristics. This paper shows a new method of generating a 
test suite optimized by a genetic algorithm from an 
operational profile. 

II. METHOD OVERVIEW 
A genetic algorithm is the simulation imitated from 

biological evolution, and it can be used for finding 
approximate solutions of a problem that is NP-hard or is hard 
to be formulated. There are some studies about the software 
testing technique that effectively applies it to testcase 

generation [3]. The procedure of a genetic algorithm usually 
consists of the following steps: 

Step 1. An initial set of chromosomes is generated, and the 
fitness of each chromosome is evaluated. 

Step 2. New chromosomes are generated by crossover and 
mutation, and the fitness of each new chromosome 
is evaluated. 

Step 3. Chromosomes of the next generation are selected 
based on the fitness. 

Step 4. If termination conditions (e.g., the number of 
generations) are not satisfied, this procedure returns 
to step 2. 

Step 5. A chromosome of the highest fitness is outputted as 
a solution. 

Our method is based on the above procedure. The genetic 
representation and genetic operations (crossover, mutation 
and selection) are the points of a genetic algorithm. Those 
for our method are set as follows: 

A. Genetic representation 
Genetic representation is the way of mapping from 

candidate solutions onto chromosomes. In our method, a test 
suite is represented as a chromosome. See Fig.1 (a). A 
testcase (a gene) is randomly generated in proportion to 
probability distributions of an operational profile. This 
straightforward mapping obviates the necessity for an 
encoding routine that translates candidate solutions into 
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Figure 1.  Overview of genetic representation and genetic operations in 

this method. 
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chromosomes and a decoding routine that translates 
chromosomes into candidate solutions. 

B. Crossover 
Crossover is the operation in which a pair of parent 

chromosomes exchanges their genes and generates offspring 
chromosomes. In our method, test suites (parent 
chromosomes) are randomly selected with a crossover 
probability Pc (0.0<Pc< 1.0), and then they are paired up. 
After that, each pair selects two cut positions randomly, and 
testcases between the cut positions are exchanged for the 
purpose of generating new test suites (offspring 
chromosomes) as shown in Fig.1 (b). This is generally called 
two-point crossover. 

C. Mutation 
Mutation is the operation in which part of a parent 

chromosome is changed for generating a offspring 
chromosome. In our method, testcases (genes of parent 
chromosomes) are randomly selected with a mutation 
probability Pm (0.0 < Pm < 1.0). After that, replacing the 
selected testcases with new testcases generated randomly 
produces new test suites (offspring chromosomes). See Fig.1 
(c). 

D. Selection 
Selection is the operation in which chromosomes of a 

next generation are selected based on fitness. UDC 
(0.0≤UDC≤ 1.0) is used as fitness in our method. UDC of a 
test suite (i.e., fitness of a chromosome) is a total sum of 
UDC of testcases that the test suite consists of, and UDC of a 
testcase is a total product of transition probabilities that 
appear in the testcase; for example, UDC of a test suite 
{a1b2d3g2f, a1b2e2f} in Fig.2 is about 0.12 (1.00 × 0.67 
×0.61×0.88×0.28 + 1.00×0.67×0.11×0.28). However, if 
the size of a test suite exceeds a fixed upper limit L, its 
fitness is calculated as UDC − UDC×M by introducing a 
penalty M (0.0 ≤ M ≤ 1.0). For a next generation, S 
chromosomes are randomly selected in proportion to fitness; 
where S is population size of each generation. This is 
generally called roulette wheel selection, in which a 
chromosome of high fitness has many chances of survival. 

III. SIMPLE EXAMPLE 
We applied this method to a simple operational profile 

shown in Fig.2. Setting parameters to L=100, S=20, Pc=0.5, 
Pm=0.1, M=0.3 resulted in Fig.3. It wouldn't be easy to grow 
UDC well even though new testcases are added to a test suite 
without the upper limit of the size L. However, this method 
improved UDC of a test suite from 0.45 to 0.53 within L 
through 1000 generations. 

We have developed a tool HOUMA2 (High-Order Usage 
Model Analyzer 2) for automating this method. When 
HOUMA2 receives data about an operational profile and 
parameter settings, it outputs the best test suite and a detailed 
report about its process and results. The execution time of 
this example was about 11.9 seconds on a notebook 
computer with 1.2GHz CPU and 2.0GB RAM. 

IV. CONCLUSION AND FUTURE WORK 
This paper showed that an effective test suite can be 

automatically generated from an operational profile by using 
a genetic algorithm. The characteristic of this method is to 
use UDC as fitness. Since this method would enable 
software test engineers to test software features of high use 
probability rapidly, it can be useful for finding serious 
software faults and taking an overview of software reliability 
level in a hard-pressed test process. 

The genetic representation and operations are important 
factors that determine the outcome of this method. Future 
work includes developing them to improve its solution 
search capability, and evaluating the effectiveness through 
trial applications to actual software development. 
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Figure 2.  Operational profile of simple internet shopping system. 
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Figure 3.  UDC growth of the best test suite. 

 


