

Operational Profile-based Test Suite Generation using a Genetic Algorithm

Tomohiko Takagi, Shinichiro Hashimoto, and Zengo Furukawa
Dept. of Reliability-based Information Systems Engineering,

Faculty of Engineering, Kagawa University
Takamatsu, Kagawa, Japan

Abstract—This paper shows that a test suite (a set of testcases)
that enables software test engineers to rapidly and
comprehensively execute software features of high use
probability is generated from an operational profile by using a
genetic algorithm. Test suites are represented as chromosomes,
and genetic operations such as crossover, mutation and
selection are applied to them. Usage distribution coverage
(UDC) is used for evaluating the fitness of chromosomes. We
have developed a tool for automating this method, and showed
a simple example.

Keywords - software testing; testcase; coverage; operational
profile; state machine; genetic algorithm

I. INTRODUCTION
An operational profile is a model that represents the

usage characteristics of software in its operational
environments as a probabilistic state machine, and it is
typically used for generating testcases (state transition
sequences from an initial state to a final state) in software
testing. It is well-known that the operational profile allows
the infinite generation of testcases in order to evaluate
software reliability based on the law of large number [1]. On
the other hand, software test engineers having a limited
period of time require a new testcase generation method to
perform agile testing (i.e., to rapidly and comprehensively
test software features of high use probability).

A recent study [2] proposed usage distribution coverage
(UDC) that indicates what percentage of software use has
been executed by a test suite (a set of testcases) and each
individual testcase. Therefore, the new testcase generation
method described above can be viewed from the
optimization problem of maximizing UDC within the size of
a test suite (the number of state transitions) that engineers
can perform. Since solving this problem deterministically is
difficult, one of effective techniques is to introduce meta-
heuristics. This paper shows a new method of generating a
test suite optimized by a genetic algorithm from an
operational profile.

II. METHOD OVERVIEW
A genetic algorithm is the simulation imitated from

biological evolution, and it can be used for finding
approximate solutions of a problem that is NP-hard or is hard
to be formulated. There are some studies about the software
testing technique that effectively applies it to testcase

generation [3]. The procedure of a genetic algorithm usually
consists of the following steps:

Step 1. An initial set of chromosomes is generated, and the
fitness of each chromosome is evaluated.

Step 2. New chromosomes are generated by crossover and
mutation, and the fitness of each new chromosome
is evaluated.

Step 3. Chromosomes of the next generation are selected
based on the fitness.

Step 4. If termination conditions (e.g., the number of
generations) are not satisfied, this procedure returns
to step 2.

Step 5. A chromosome of the highest fitness is outputted as
a solution.

Our method is based on the above procedure. The genetic
representation and genetic operations (crossover, mutation
and selection) are the points of a genetic algorithm. Those
for our method are set as follows:

A. Genetic representation
Genetic representation is the way of mapping from

candidate solutions onto chromosomes. In our method, a test
suite is represented as a chromosome. See Fig.1 (a). A
testcase (a gene) is randomly generated in proportion to
probability distributions of an operational profile. This
straightforward mapping obviates the necessity for an
encoding routine that translates candidate solutions into

t1

(a) Example of a chromosome (containing seven testcases)

tn is a testcase (a sequence of state transitions

(b) Example of crossover

parent 1

parent 2

t2 t3 t4 t5 t6 t7

t11 t12 t13 t14 t15

t21 t22 t23 t24

offspring 1

offspring 2

t11

t12 t13

t14 t15

t21

t22 t23

t24

generate

(c) Example of mutation

from an initial state to a final state).

parent t1 t2 t3 t4 t5 t1 t2 t3 t4' t5
generate offspring

newly generated testcase

exchanged

Figure 1. Overview of genetic representation and genetic operations in

this method.

Copyright ISSRE 2009

chromosomes and a decoding routine that translates
chromosomes into candidate solutions.

B. Crossover
Crossover is the operation in which a pair of parent

chromosomes exchanges their genes and generates offspring
chromosomes. In our method, test suites (parent
chromosomes) are randomly selected with a crossover
probability Pc (0.0<Pc< 1.0), and then they are paired up.
After that, each pair selects two cut positions randomly, and
testcases between the cut positions are exchanged for the
purpose of generating new test suites (offspring
chromosomes) as shown in Fig.1 (b). This is generally called
two-point crossover.

C. Mutation
Mutation is the operation in which part of a parent

chromosome is changed for generating a offspring
chromosome. In our method, testcases (genes of parent
chromosomes) are randomly selected with a mutation
probability Pm (0.0 < Pm < 1.0). After that, replacing the
selected testcases with new testcases generated randomly
produces new test suites (offspring chromosomes). See Fig.1
(c).

D. Selection
Selection is the operation in which chromosomes of a

next generation are selected based on fitness. UDC
(0.0≤UDC≤ 1.0) is used as fitness in our method. UDC of a
test suite (i.e., fitness of a chromosome) is a total sum of
UDC of testcases that the test suite consists of, and UDC of a
testcase is a total product of transition probabilities that
appear in the testcase; for example, UDC of a test suite
{a1b2d3g2f, a1b2e2f} in Fig.2 is about 0.12 (1.00 × 0.67
×0.61×0.88×0.28 + 1.00×0.67×0.11×0.28). However, if
the size of a test suite exceeds a fixed upper limit L, its
fitness is calculated as UDC − UDC×M by introducing a
penalty M (0.0 ≤ M ≤ 1.0). For a next generation, S
chromosomes are randomly selected in proportion to fitness;
where S is population size of each generation. This is
generally called roulette wheel selection, in which a
chromosome of high fitness has many chances of survival.

III. SIMPLE EXAMPLE
We applied this method to a simple operational profile

shown in Fig.2. Setting parameters to L=100, S=20, Pc=0.5,
Pm=0.1, M=0.3 resulted in Fig.3. It wouldn't be easy to grow
UDC well even though new testcases are added to a test suite
without the upper limit of the size L. However, this method
improved UDC of a test suite from 0.45 to 0.53 within L
through 1000 generations.

We have developed a tool HOUMA2 (High-Order Usage
Model Analyzer 2) for automating this method. When
HOUMA2 receives data about an operational profile and
parameter settings, it outputs the best test suite and a detailed
report about its process and results. The execution time of
this example was about 11.9 seconds on a notebook
computer with 1.2GHz CPU and 2.0GB RAM.

IV. CONCLUSION AND FUTURE WORK
This paper showed that an effective test suite can be

automatically generated from an operational profile by using
a genetic algorithm. The characteristic of this method is to
use UDC as fitness. Since this method would enable
software test engineers to test software features of high use
probability rapidly, it can be useful for finding serious
software faults and taking an overview of software reliability
level in a hard-pressed test process.

The genetic representation and operations are important
factors that determine the outcome of this method. Future
work includes developing them to improve its solution
search capability, and evaluating the effectiveness through
trial applications to actual software development.

REFERENCES
[1] G.H. Walton, J.H. Poore, and C.J. Trammell, "Statistical Testing of

Software Based on a Usage Model", Software Practice and
Experience, Vol.25, No.1, pp.97-108, 1995.

[2] T. Takagi, K. Nishimachi, M. Muragishi, T. Mitsuhashi, and Z.
Furukawa, "Usage Distribution Coverage: What Percentage of
Expected Use Has Been Executed in Software Testing?", Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Studies in Computational
Intelligence, Springer, pp.57-68, 2009.

[3] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, "Test
Data Generation from UML State Machine Diagrams using GAs",
Proc. International Conference on Software Engineering Advances,
pp.47, 2007.

1. Logging on

2. Inputting Order 3. Checking Order

a. invoke
100% 33%

11%
b. input correct

account info.

c. input wrong
account info.

67%

f. log off
28%

d. input order info. 61%

h. cancel 12%

g. decide on the order
88%

e. input wrong
order info.

Legend

initial pseudo state

final pseudo state

state

transition

Figure 2. Operational profile of simple internet shopping system.

0.35

0.40

0.45

0.50

0.55

0.60

0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s (

U
D

C
)

No. of generation

Best solution

Best solution in
each generation

Figure 3. UDC growth of the best test suite.

